Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Convert the angle 
theta=(23 pi)/(20) radians to degrees.
Express your answer exactly.

theta=◻" 。 "

Convert the angle θ=23π20 \theta=\frac{23 \pi}{20} radians to degrees.\newlineExpress your answer exactly.\newlineθ= \theta=\square^{\circ}

Full solution

Q. Convert the angle θ=23π20 \theta=\frac{23 \pi}{20} radians to degrees.\newlineExpress your answer exactly.\newlineθ= \theta=\square^{\circ}
  1. Conversion factor for radians to degrees: To convert radians to degrees, we use the conversion factor that π\pi radians is equal to 180180 degrees. The conversion formula is:\newlineθ\theta (in degrees) = θ\theta (in radians) ×(180π)\times \left(\frac{180}{\pi}\right)
  2. Substituting the value of theta: Substitute θ=23π20\theta=\frac{23 \pi}{20} into the conversion formula:\newlineθ (in degrees)=23π20×180π\theta \text{ (in degrees)} = \frac{23 \pi}{20} \times \frac{180}{\pi}
  3. Simplifying the expression: Simplify the expression by canceling out the π\pi terms: θ\theta (in degrees) = 2320\frac{23}{20} * 180180
  4. Performing the multiplication: Perform the multiplication to find the value of θ\theta in degrees: θ (in degrees)=23×9\theta \text{ (in degrees)} = 23 \times 9
  5. Calculating the product: Calculate the product: θ\theta (in degrees) = 207207

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity