Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Let
g
(
x
)
=
x
5
+
3
x
g(x)=x^{5}+3 x
g
(
x
)
=
x
5
+
3
x
and let
h
h
h
be the inverse function of
g
g
g
. Notice that
g
(
1
)
=
4
g(1)=4
g
(
1
)
=
4
.
\newline
h
′
(
4
)
=
h^{\prime}(4)=
h
′
(
4
)
=
View step-by-step help
Home
Math Problems
Algebra 1
Transformations of quadratic functions
Full solution
Q.
Let
g
(
x
)
=
x
5
+
3
x
g(x)=x^{5}+3 x
g
(
x
)
=
x
5
+
3
x
and let
h
h
h
be the inverse function of
g
g
g
. Notice that
g
(
1
)
=
4
g(1)=4
g
(
1
)
=
4
.
\newline
h
′
(
4
)
=
h^{\prime}(4)=
h
′
(
4
)
=
Use Inverse Function Derivative Formula:
To find
h
′
(
4
)
h'(4)
h
′
(
4
)
, we need to use the formula for the derivative of the inverse function:
h
′
(
g
(
x
)
)
=
1
g
′
(
x
)
h'(g(x)) = \frac{1}{g'(x)}
h
′
(
g
(
x
))
=
g
′
(
x
)
1
.
Find
g
′
(
x
)
g'(x)
g
′
(
x
)
:
First, we need to find
g
′
(
x
)
g'(x)
g
′
(
x
)
, which is the derivative of
g
(
x
)
=
x
5
+
3
x
g(x) = x^5 + 3x
g
(
x
)
=
x
5
+
3
x
.
\newline
g
′
(
x
)
=
5
x
4
+
3
g'(x) = 5x^4 + 3
g
′
(
x
)
=
5
x
4
+
3
.
Calculate
g
′
(
1
)
g'(1)
g
′
(
1
)
:
Now we plug in
x
=
1
x = 1
x
=
1
into
g
′
(
x
)
g'(x)
g
′
(
x
)
since
g
(
1
)
=
4
g(1) = 4
g
(
1
)
=
4
and we want
h
′
(
4
)
h'(4)
h
′
(
4
)
.
\newline
g
′
(
1
)
=
5
(
1
)
4
+
3
=
5
+
3
=
8
g'(1) = 5(1)^4 + 3 = 5 + 3 = 8
g
′
(
1
)
=
5
(
1
)
4
+
3
=
5
+
3
=
8
.
Apply Inverse Function Derivative Formula:
Now we use the formula for the derivative of the inverse function.
h
′
(
4
)
=
1
g
′
(
1
)
=
1
8
h'(4) = \frac{1}{g'(1)} = \frac{1}{8}
h
′
(
4
)
=
g
′
(
1
)
1
=
8
1
.
More problems from Transformations of quadratic functions
Question
The function
h
h
h
is defined over the real numbers. This table gives a few values of
h
h
h
.
\newline
\begin{tabular}{lllll}
\newline
x
x
x
&
−
6
-6
−
6
.
1
1
1
&
−
6
-6
−
6
.
01
01
01
&
−
6
-6
−
6
.
001
001
001
&
−
5
-5
−
5
.
9
9
9
\\
\newline
\hline
h
(
x
)
h(x)
h
(
x
)
&
−
0
-0
−
0
.
25
25
25
&
−
0
-0
−
0
.
74
74
74
&
−
0
-0
−
0
.
98
98
98
&
−
1
-1
−
1
.
0
0
0
\newline
\end{tabular}
\newline
What is a reasonable estimate for
lim
x
→
−
6
h
(
x
)
\lim _{x \rightarrow-6} h(x)
lim
x
→
−
6
h
(
x
)
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
6
-6
−
6
\newline
(B)
−
2
-2
−
2
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 1 year ago
Question
What is the amplitude of
\newline
g
(
x
)
=
−
2
sin
(
π
2
x
−
3
)
+
5
?
g(x)=-2 \sin \left(\frac{\pi}{2} x-3\right)+5 ?
g
(
x
)
=
−
2
sin
(
2
π
x
−
3
)
+
5
?
\newline
units
Get tutor help
Posted 1 year ago
Question
What is the amplitude of
y
=
5
sin
(
4
x
−
2
)
−
3
y=5 \sin (4 x-2)-3
y
=
5
sin
(
4
x
−
2
)
−
3
?
\newline
units
Get tutor help
Posted 1 year ago
Question
What is the amplitude of
y
=
−
3
cos
(
π
x
+
2
)
−
6
?
y=-3 \cos (\pi x+2)-6 ?
y
=
−
3
cos
(
π
x
+
2
)
−
6
?
\newline
units
Get tutor help
Posted 1 year ago
Question
What is the amplitude of
y
=
3
sin
(
2
x
−
1
)
+
4
y=3 \sin (2 x-1)+4
y
=
3
sin
(
2
x
−
1
)
+
4
?
\newline
units
Get tutor help
Posted 1 year ago
Question
What is the period of the function
h
(
x
)
=
−
3
cos
(
π
x
+
2
)
−
6
?
h(x)=-3 \cos (\pi x+2)-6 ?
h
(
x
)
=
−
3
cos
(
π
x
+
2
)
−
6
?
\newline
Give an exact value.
\newline
units
Get tutor help
Posted 1 year ago
Question
What is the period of the function
\newline
h
(
x
)
=
5
sin
(
4
x
−
2
)
−
3
?
h(x)=5 \sin (4 x-2)-3 \text { ? }
h
(
x
)
=
5
sin
(
4
x
−
2
)
−
3
?
\newline
Give an exact value.
\newline
units
Get tutor help
Posted 1 year ago
Question
What is the period of the function
g
(
x
)
=
2
cos
(
7
x
+
5
)
+
1
?
g(x)=2 \cos (7 x+5)+1 ?
g
(
x
)
=
2
cos
(
7
x
+
5
)
+
1
?
\newline
Give an exact value.
\newline
units
Get tutor help
Posted 1 year ago
Question
What is the period of the function
f
(
x
)
=
3
sin
(
2
x
−
1
)
+
4
f(x)=3 \sin (2 x-1)+4
f
(
x
)
=
3
sin
(
2
x
−
1
)
+
4
?
\newline
Give an exact value.
\newline
units
Get tutor help
Posted 1 year ago
Question
What is the period of the function
f
(
x
)
=
−
4
cos
(
5
x
−
9
)
−
7
f(x)=-4 \cos (5 x-9)-7
f
(
x
)
=
−
4
cos
(
5
x
−
9
)
−
7
?
\newline
Give an exact value.
\newline
units
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant