Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=3x^(3)+8.
What is the absolute minimum value of 
g over the closed interval 
-2 <= x <= 2 ?
Choose 1 answer:
(A) -16
(B) 16
(C) 8
(D) -8

Let g(x)=3x3+8 g(x)=3 x^{3}+8 .\newlineWhat is the absolute minimum value of g g over the closed interval 2x2 -2 \leq x \leq 2 ?\newlineChoose 11 answer:\newline(A) 16-16\newline(B) 1616\newline(C) 88\newline(D) 8-8

Full solution

Q. Let g(x)=3x3+8 g(x)=3 x^{3}+8 .\newlineWhat is the absolute minimum value of g g over the closed interval 2x2 -2 \leq x \leq 2 ?\newlineChoose 11 answer:\newline(A) 16-16\newline(B) 1616\newline(C) 88\newline(D) 8-8
  1. Find Critical Points: To find the absolute minimum value of the function g(x)=3x3+8g(x) = 3x^3 + 8 on the interval [2,2][-2, 2], we first need to find the critical points of g(x)g(x) within the interval. Critical points occur where the derivative g(x)g'(x) is zero or undefined.
  2. Calculate Derivative: We calculate the derivative of g(x)g(x):g(x)=ddx(3x3+8)=9x2g'(x) = \frac{d}{dx} (3x^3 + 8) = 9x^2.
  3. Set Equal to Zero: Set the derivative equal to zero to find critical points:\newline9x2=09x^2 = 0.\newlineSolving for xx gives us x=0x = 0 as the only critical point within the interval [2,2][-2, 2].
  4. Evaluate Function: Now we evaluate the function g(x)g(x) at the critical point and the endpoints of the interval to find the absolute minimum value.g(2)=3(2)3+8=3(8)+8=24+8=16.g(-2) = 3(-2)^3 + 8 = 3(-8) + 8 = -24 + 8 = -16.g(0)=3(0)3+8=0+8=8.g(0) = 3(0)^3 + 8 = 0 + 8 = 8.g(2)=3(2)3+8=3(8)+8=24+8=32.g(2) = 3(2)^3 + 8 = 3(8) + 8 = 24 + 8 = 32.
  5. Compare Values: Comparing the values of g(x)g(x) at the critical point and the endpoints, we find that the smallest value is g(2)=16g(-2) = -16.
  6. Find Absolute Minimum: The absolute minimum value of the function g(x)=3x3+8g(x) = 3x^3 + 8 over the closed interval [2,2][-2, 2] is 16-16.

More problems from Euler's method