Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(2)/((x-3)^(2)).
Select the correct description of the one-sided limits of 
g at 
x=3.
Choose 1 answer:
(A)

{:[lim_(x rarr3^(+))g(x)=+oo" and "],[lim_(x rarr3^(-))g(x)=+oo]:}
(B)

{:[lim_(x rarr3^(+))g(x)=+oo" and "],[lim_(x rarr3^(-))g(x)=-oo]:}
(C)

{:[lim_(x rarr3^(+))g(x)=-oo" and "],[lim_(x rarr3^(-))g(x)=+oo]:}
(D)

{:[lim_(x rarr3^(+))g(x)=-oo" and "],[lim_(x rarr3^(-))g(x)=-oo]:}

Let g(x)=2(x3)2 g(x)=\frac{2}{(x-3)^{2}} .\newlineSelect the correct description of the one-sided limits of g g at x=3 x=3 .\newlineChoose 11 answer:\newline(A)\newlinelimx3+g(x)=+ and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=+\infty \end{array} \newline(B)\newlinelimx3+g(x)=+ and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=-\infty \end{array} \newline(C)\newlinelimx3+g(x)= and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=+\infty \end{array} \newline(D)\newlinelimx3+g(x)= and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=-\infty \end{array}

Full solution

Q. Let g(x)=2(x3)2 g(x)=\frac{2}{(x-3)^{2}} .\newlineSelect the correct description of the one-sided limits of g g at x=3 x=3 .\newlineChoose 11 answer:\newline(A)\newlinelimx3+g(x)=+ and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=+\infty \end{array} \newline(B)\newlinelimx3+g(x)=+ and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=-\infty \end{array} \newline(C)\newlinelimx3+g(x)= and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=+\infty \end{array} \newline(D)\newlinelimx3+g(x)= and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=-\infty \end{array}
  1. Define function: g(x)=2(x3)2g(x) = \frac{2}{(x-3)^{2}}. Let's find the limit as xx approaches 33 from the right (x3+x \to 3^+).
  2. Limit from right: As xx gets closer to 33 from the right, (x3)(x-3) gets closer to 00, making (x3)2(x-3)^2 also get closer to 00. Since we're dividing 22 by a number that's getting closer to 00, the function value will increase without bound.
  3. Limit from left: limx3+g(x)=+\lim_{x \to 3^+} g(x) = +\infty.
  4. Conclusion: Now let's find the limit as xx approaches 33 from the left (x3x \to 3^-).
  5. Conclusion: Now let's find the limit as xx approaches 33 from the left (x3x \to 3^-).As xx gets closer to 33 from the left, (x3)(x-3) gets closer to 00, making (x3)2(x-3)^2 also get closer to 00. Since we're dividing 22 by a number that's getting closer to 00, the function value will increase without bound, just like from the right side.
  6. Conclusion: Now let's find the limit as xx approaches 33 from the left (x3x \to 3^-).As xx gets closer to 33 from the left, (x3)(x-3) gets closer to 00, making (x3)2(x-3)^2 also get closer to 00. Since we're dividing 22 by a number that's getting closer to 00, the function value will increase without bound, just like from the right side.3311
  7. Conclusion: Now let's find the limit as xx approaches 33 from the left (x3x \to 3^-).As xx gets closer to 33 from the left, (x3)(x-3) gets closer to 00, making (x3)2(x-3)^2 also get closer to 00. Since we're dividing 22 by a number that's getting closer to 00, the function value will increase without bound, just like from the right side.3311.Both one-sided limits as xx approaches 33 are 3344, so the correct answer is 3355 \(\left\{:\left[\lim_{x \to\(3\)^{+}}g(x)=+\infty\quad \text{and} \quad\right],\left[\lim_{x \to\(3\)^{-}}g(x)=+\infty\right]:\right\}\.}

More problems from Compare linear and exponential growth