Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(2)/((x-3)^(2)).
Select the correct description of the one-sided limits of 
g at 
x=3.
Choose 1 answer:
(A)

{:[lim_(x rarr3^(+))g(x)=+oo" and "],[lim_(x rarr3^(-))g(x)=+oo]:}
(B)

{:[lim_(x rarr3^(+))g(x)=+oo" and "],[lim_(x rarr3^(-))g(x)=-oo]:}
(c)

{:[lim_(x rarr3^(+))g(x)=-oo" and "],[lim_(x rarr3^(-))g(x)=+oo]:}
(D)

{:[lim_(x rarr3^(+))g(x)=-oo" and "],[lim_(x rarr3^(-))g(x)=-oo]:}

Let g(x)=2(x3)2 g(x)=\frac{2}{(x-3)^{2}} .\newlineSelect the correct description of the one-sided limits of g g at x=3 x=3 .\newlineChoose 11 answer:\newline(A)\newlinelimx3+g(x)=+ and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=+\infty \end{array} \newline(B)\newlinelimx3+g(x)=+ and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=-\infty \end{array} \newline(C)\newlinelimx3+g(x)= and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=+\infty \end{array} \newline(D)\newlinelimx3+g(x)= and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=-\infty \end{array}

Full solution

Q. Let g(x)=2(x3)2 g(x)=\frac{2}{(x-3)^{2}} .\newlineSelect the correct description of the one-sided limits of g g at x=3 x=3 .\newlineChoose 11 answer:\newline(A)\newlinelimx3+g(x)=+ and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=+\infty \end{array} \newline(B)\newlinelimx3+g(x)=+ and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=-\infty \end{array} \newline(C)\newlinelimx3+g(x)= and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=+\infty \end{array} \newline(D)\newlinelimx3+g(x)= and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow 3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 3^{-}} g(x)=-\infty \end{array}
  1. Analyze function behavior: Analyze the function g(x)=2(x3)2g(x) = \frac{2}{(x - 3)^2} to understand its behavior near x=3x = 3. The function is a rational function with a denominator that approaches zero as xx approaches 33. Since the numerator is a positive constant (22), the sign of g(x)g(x) will depend on the sign of the denominator.
  2. Limit from the right: Consider the limit as xx approaches 33 from the right (x3+x \to 3^+).\newlineAs xx gets closer to 33 from the right, (x3)2(x - 3)^2 is always positive because squaring a real number always gives a positive result. As the denominator approaches zero, the value of g(x)g(x) becomes very large. Therefore, the limit from the right is positive infinity.
  3. Limit from the left: Consider the limit as xx approaches 33 from the left (x3x \to 3^-).\newlineAs xx gets closer to 33 from the left, (x3)2(x - 3)^2 is still always positive for the same reason as in Step 22. As the denominator approaches zero, the value of g(x)g(x) becomes very large. Therefore, the limit from the left is also positive infinity.
  4. Combine results: Combine the results from Step 22 and Step 33 to determine the one-sided limits of g(x)g(x) at x=3x = 3. Since both one-sided limits are positive infinity, the correct description of the one-sided limits of gg at x=3x = 3 is: limx3+g(x)=+\lim_{x \to 3^+} g(x) = +\infty and limx3g(x)=+\lim_{x \to 3^-} g(x) = +\infty.

More problems from Compare linear, exponential, and quadratic growth