Q. - Let g be a function such that g(1)=5 and g′(1)=−3.- Let h be the function h(x)=x2.Let F be a function defined as F(x)=h(x)g(x).F′(1)=
Given values: We are given g(1)=5 and g′(1)=−3. We also know that h(x)=x2, so h(1)=12=1 and h′(x)=2x, so h′(1)=2⋅1=2.
Quotient rule for derivatives: To find F′(x), we need to use the quotient rule for derivatives, which states that if F(x)=h(x)g(x), then F′(x)=(h(x))2g′(x)h(x)−g(x)h′(x).
Substitute values into formula: Now we substitute x=1 into the quotient rule formula using the values we have: g(1)=5, g′(1)=−3, h(1)=1, and h′(1)=2.F′(1)=((−3)⋅1−5⋅2)/(1)2=(−3−10)/1=−13/1=−13.
More problems from Find the vertex of the transformed function