Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g be a function such that 
g(1)=5 and 
g^(')(1)=-3.
Let 
h be the function 
h(x)=x^(2).

Let 
F be a function defined as 
F(x)=(g(x))/(h(x)).

F^(')(1)=

- Let g g be a function such that g(1)=5 g(1)=5 and g(1)=3 g^{\prime}(1)=-3 .\newline- Let h h be the function h(x)=x2 h(x)=x^{2} .\newlineLet F F be a function defined as F(x)=g(x)h(x) F(x)=\frac{g(x)}{h(x)} .\newlineF(1)= F^{\prime}(1)=

Full solution

Q. - Let g g be a function such that g(1)=5 g(1)=5 and g(1)=3 g^{\prime}(1)=-3 .\newline- Let h h be the function h(x)=x2 h(x)=x^{2} .\newlineLet F F be a function defined as F(x)=g(x)h(x) F(x)=\frac{g(x)}{h(x)} .\newlineF(1)= F^{\prime}(1)=
  1. Given values: We are given g(1)=5g(1) = 5 and g(1)=3g'(1) = -3. We also know that h(x)=x2h(x) = x^2, so h(1)=12=1h(1) = 1^2 = 1 and h(x)=2xh'(x) = 2x, so h(1)=21=2h'(1) = 2\cdot 1 = 2.
  2. Quotient rule for derivatives: To find F(x)F'(x), we need to use the quotient rule for derivatives, which states that if F(x)=g(x)h(x)F(x) = \frac{g(x)}{h(x)}, then F(x)=g(x)h(x)g(x)h(x)(h(x))2F'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{(h(x))^2}.
  3. Substitute values into formula: Now we substitute x=1x = 1 into the quotient rule formula using the values we have: g(1)=5g(1) = 5, g(1)=3g'(1) = -3, h(1)=1h(1) = 1, and h(1)=2h'(1) = 2.F(1)=((3)152)/(1)2=(310)/1=13/1=13F'(1) = ((-3)\cdot 1 - 5\cdot 2)/(1)^2 = (-3 - 10)/1 = -13/1 = -13.

More problems from Find the vertex of the transformed function