Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=(x)/(5sin(x+1)).
Select the correct description of the one-sided limits of 
f at 
x=-1.
Choose 1 answer:
(A)

{:[lim_(x rarr-1^(+))f(x)=+oo" and "],[lim_(x rarr-1^(-))f(x)=+oo]:}
(B)

{:[lim_(x rarr-1^(+))f(x)=+oo" and "],[lim_(x rarr-1^(-))f(x)=-oo]:}
(c)

{:[lim_(x rarr-1^(+))f(x)=-oo" and "],[lim_(x rarr-1^(-))f(x)=+oo]:}
(D)

{:[lim_(x rarr-1^(+))f(x)=-oo" and "],[lim_(x rarr-1^(-))f(x)=-oo]:}

Let f(x)=x5sin(x+1) f(x)=\frac{x}{5 \sin (x+1)} .\newlineSelect the correct description of the one-sided limits of f f at x=1 x=-1 .\newlineChoose 11 answer:\newline(A)\newlinelimx1+f(x)=+ and limx1f(x)=+ \begin{array}{l} \lim _{x \rightarrow-1^{+}} f(x)=+\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} f(x)=+\infty \end{array} \newline(B)\newlinelimx1+f(x)=+ and limx1f(x)= \begin{array}{l} \lim _{x \rightarrow-1^{+}} f(x)=+\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} f(x)=-\infty \end{array} \newline(C)\newlinelimx1+f(x)= and limx1f(x)=+ \begin{array}{l} \lim _{x \rightarrow-1^{+}} f(x)=-\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} f(x)=+\infty \end{array} \newline(D)\newlinelimx1+f(x)= and limx1f(x)= \begin{array}{l} \lim _{x \rightarrow-1^{+}} f(x)=-\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} f(x)=-\infty \end{array}

Full solution

Q. Let f(x)=x5sin(x+1) f(x)=\frac{x}{5 \sin (x+1)} .\newlineSelect the correct description of the one-sided limits of f f at x=1 x=-1 .\newlineChoose 11 answer:\newline(A)\newlinelimx1+f(x)=+ and limx1f(x)=+ \begin{array}{l} \lim _{x \rightarrow-1^{+}} f(x)=+\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} f(x)=+\infty \end{array} \newline(B)\newlinelimx1+f(x)=+ and limx1f(x)= \begin{array}{l} \lim _{x \rightarrow-1^{+}} f(x)=+\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} f(x)=-\infty \end{array} \newline(C)\newlinelimx1+f(x)= and limx1f(x)=+ \begin{array}{l} \lim _{x \rightarrow-1^{+}} f(x)=-\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} f(x)=+\infty \end{array} \newline(D)\newlinelimx1+f(x)= and limx1f(x)= \begin{array}{l} \lim _{x \rightarrow-1^{+}} f(x)=-\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} f(x)=-\infty \end{array}
  1. Analyze Function Behavior: Analyze the function near the point of interest.\newlineWe are interested in the behavior of the function f(x)=x5sin(x+1)f(x) = \frac{x}{5\sin(x+1)} as xx approaches 1-1. To understand the behavior of the function near x=1x = -1, we need to look at the values of the sine function near x=1x = -1.
  2. Evaluate Sine Function: Evaluate the sine function at the point of interest.\newlineWe need to evaluate sin(x+1)\sin(x+1) as xx approaches 1-1. When x=1x = -1, x+1=0x+1 = 0, and we know that sin(0)=0\sin(0) = 0. This means that as xx approaches 1-1, the denominator of our function approaches 00.
  3. Determine Sine Sign: Determine the sign of the sine function just before and just after x=1x = -1. Just before x=1x = -1 (as xx approaches 1-1 from the left), x+1x+1 is slightly negative, and since the sine function is continuous and smooth, sin(x+1)\sin(x+1) will be slightly negative. Just after x=1x = -1 (as xx approaches 1-1 from the right), x+1x+1 is slightly positive, and sin(x+1)\sin(x+1) will be slightly positive.
  4. Calculate One-Sided Limits: Determine the one-sided limits using the sign of the sine function.\newlineAs xx approaches 1-1 from the left, sin(x+1)\sin(x+1) is negative, and since the numerator xx is also negative, the fraction x5sin(x+1)\frac{x}{5\sin(x+1)} will be positive. Therefore, limx1f(x)=+\lim_{x \rightarrow -1^{-}}f(x) = +\infty.\newlineAs xx approaches 1-1 from the right, sin(x+1)\sin(x+1) is positive, and since the numerator xx is negative, the fraction x5sin(x+1)\frac{x}{5\sin(x+1)} will be negative. Therefore, 1-111.

More problems from Compare linear, exponential, and quadratic growth