Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=x^(-2).

f^(')(2)=

Let f(x)=x2 f(x)=x^{-2} .\newlinef(2)= f^{\prime}(2)=

Full solution

Q. Let f(x)=x2 f(x)=x^{-2} .\newlinef(2)= f^{\prime}(2)=
  1. Apply Power Rule: We need to find the derivative of the function f(x)=x2f(x) = x^{-2} with respect to xx. To do this, we will use the power rule for differentiation, which states that if f(x)=xnf(x) = x^n, then f(x)=nxn1f^{\prime}(x) = n \cdot x^{n-1}.
  2. Calculate Derivative: Applying the power rule to f(x)=x2f(x) = x^{-2}, we get f(x)=(2)x21=2x3f^{\prime}(x) = (-2)\cdot x^{-2-1} = -2\cdot x^{-3}.
  3. Substitute x=2x=2: Now we need to evaluate the derivative at x=2x = 2. So we substitute xx with 22 in the expression for f(x)f^{\prime}(x) to get f(2)=2(2)3f^{\prime}(2) = -2\cdot(2)^{-3}.
  4. Evaluate f(2)f'(2): Calculating the value of f(2)f'(2), we have f(2)=2×(123)=2×(18)=28f'(2) = -2\times\left(\frac{1}{2^3}\right) = -2\times\left(\frac{1}{8}\right) = -\frac{2}{8}.
  5. Simplify Fraction: Simplifying the fraction 28-\frac{2}{8}, we get f(2)=14f^{\prime}(2) = -\frac{1}{4}.

More problems from Find trigonometric ratios using multiple identities