Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=(1)/(2)x^(3)+3x-4 and let 
h be the inverse function of 
f. Notice that 
f(-2)=-14.

h^(')(-14)=

Let f(x)=12x3+3x4 f(x)=\frac{1}{2} x^{3}+3 x-4 and let h h be the inverse function of f f . Notice that f(2)=14 f(-2)=-14 .\newlineh(14)= h^{\prime}(-14)=

Full solution

Q. Let f(x)=12x3+3x4 f(x)=\frac{1}{2} x^{3}+3 x-4 and let h h be the inverse function of f f . Notice that f(2)=14 f(-2)=-14 .\newlineh(14)= h^{\prime}(-14)=
  1. Find h(14)h'(-14): To find h(14)h'(-14), we need to use the formula for the derivative of the inverse function: h(y)=1f(x)h'(y) = \frac{1}{f'(x)} where f(x)=yf(x) = y.
  2. Find f(2)f'(-2): Since f(2)=14f(-2) = -14, we have x=2x = -2 when y=14y = -14. Now we need to find f(2)f'(-2).
  3. Differentiate f(x)f(x): Differentiate f(x)=12x3+3x4f(x) = \frac{1}{2}x^3 + 3x - 4 to get f(x)=32x2+3f'(x) = \frac{3}{2}x^2 + 3.
  4. Plug x=2x = -2: Now plug x=2x = -2 into f(x)f'(x) to find f(2)f'(-2): f(2)=(32)(2)2+3=(32)4+3=6+3=9f'(-2) = (\frac{3}{2})(-2)^2 + 3 = (\frac{3}{2})\cdot4 + 3 = 6 + 3 = 9.
  5. Use formula for h(14)h'(-14): Use the formula for the derivative of the inverse function: h(14)=1f(2)=19h'(-14) = \frac{1}{f'(-2)} = \frac{1}{9}.

More problems from Transformations of quadratic functions