Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

j^(3)+3j^(2)k+3jk^(2)+k^(3)
Which of the following is equivalent to the given expression?
Choose 1 answer:
(A) 
j^(3)+3(jk)^(2)+k^(3)
(B) 
j^(3)+6(jk)^(2)+k^(3)
(c) 
j^(3)+3jk(j+k)+k^(3)
(D) 
j^(3)+6jk(j+k)+k^(3)

j3+3j2k+3jk2+k3 j^{3}+3 j^{2} k+3 j k^{2}+k^{3} \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) j3+3(jk)2+k3 j^{3}+3(j k)^{2}+k^{3} \newline(B) j3+6(jk)2+k3 j^{3}+6(j k)^{2}+k^{3} \newline(C) j3+3jk(j+k)+k3 j^{3}+3 j k(j+k)+k^{3} \newline(D) j3+6jk(j+k)+k3 j^{3}+6 j k(j+k)+k^{3}

Full solution

Q. j3+3j2k+3jk2+k3 j^{3}+3 j^{2} k+3 j k^{2}+k^{3} \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) j3+3(jk)2+k3 j^{3}+3(j k)^{2}+k^{3} \newline(B) j3+6(jk)2+k3 j^{3}+6(j k)^{2}+k^{3} \newline(C) j3+3jk(j+k)+k3 j^{3}+3 j k(j+k)+k^{3} \newline(D) j3+6jk(j+k)+k3 j^{3}+6 j k(j+k)+k^{3}
  1. Given expression: The given expression is j3+3j2k+3jk2+k3j^{3}+3j^{2}k+3jk^{2}+k^{3}. We need to identify which of the provided choices is equivalent to this expression.
  2. Recognizing the binomial expansion: Recognize that the given expression is the expansion of (j+k)3(j+k)^3 based on the binomial theorem, which states that (a+b)3=a3+3a2b+3ab2+b3(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.
  3. Comparing the given expression to the binomial expansion: We can compare the given expression to the binomial expansion:\newlinej3+3j2k+3jk2+k3j^{3}+3j^{2}k+3jk^{2}+k^{3} matches the form a3+3a2b+3ab2+b3a^3 + 3a^2b + 3ab^2 + b^3 with a=ja=j and b=kb=k.
  4. Comparing the given expression to the answer choices: Now, let's compare the given expression to the answer choices:\newline(A) j3+3(jk)2+k3j^{3}+3(jk)^{2}+k^{3} simplifies to j3+3j2k2+k3j^{3}+3j^{2}k^{2}+k^{3}, which is not the same as the given expression.
  5. Identifying the correct answer: (B) j3+6(jk)2+k3j^{3}+6(jk)^{2}+k^{3} simplifies to j3+6j2k2+k3j^{3}+6j^{2}k^{2}+k^{3}, which is also not the same as the given expression.
  6. Identifying the correct answer: (B) j3+6(jk)2+k3j^{3}+6(jk)^{2}+k^{3} simplifies to j3+6j2k2+k3j^{3}+6j^{2}k^{2}+k^{3}, which is also not the same as the given expression.(C) j3+3jk(j+k)+k3j^{3}+3jk(j+k)+k^{3} simplifies to j3+3j2k+3jk2+k3j^{3}+3j^{2}k+3jk^{2}+k^{3}, which matches the given expression exactly.
  7. Identifying the correct answer: (B) j3+6(jk)2+k3j^{3}+6(jk)^{2}+k^{3} simplifies to j3+6j2k2+k3j^{3}+6j^{2}k^{2}+k^{3}, which is also not the same as the given expression.(C) j3+3jk(j+k)+k3j^{3}+3jk(j+k)+k^{3} simplifies to j3+3j2k+3jk2+k3j^{3}+3j^{2}k+3jk^{2}+k^{3}, which matches the given expression exactly.(D) j3+6jk(j+k)+k3j^{3}+6jk(j+k)+k^{3} simplifies to j3+6j2k+6jk2+k3j^{3}+6j^{2}k+6jk^{2}+k^{3}, which does not match the given expression.
  8. Identifying the correct answer: (B) j3+6(jk)2+k3j^{3}+6(jk)^{2}+k^{3} simplifies to j3+6j2k2+k3j^{3}+6j^{2}k^{2}+k^{3}, which is also not the same as the given expression.(C) j3+3jk(j+k)+k3j^{3}+3jk(j+k)+k^{3} simplifies to j3+3j2k+3jk2+k3j^{3}+3j^{2}k+3jk^{2}+k^{3}, which matches the given expression exactly.(D) j3+6jk(j+k)+k3j^{3}+6jk(j+k)+k^{3} simplifies to j3+6j2k+6jk2+k3j^{3}+6j^{2}k+6jk^{2}+k^{3}, which does not match the given expression.Therefore, the correct answer is (C) j3+3jk(j+k)+k3j^{3}+3jk(j+k)+k^{3}, which is equivalent to the given expression.

More problems from Compare linear and exponential growth