Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Integrate

ln((5)/(12)a) da

Integrate\newlineln(512a) da  \ln \left(\frac{5}{12} a\right) \text { da }

Full solution

Q. Integrate\newlineln(512a) da  \ln \left(\frac{5}{12} a\right) \text { da }
  1. Set u=512au = \frac{5}{12}a: We are asked to integrate the natural logarithm function ln(512a)\ln\left(\frac{5}{12}a\right) with respect to aa. The integral of ln(x)\ln(x) with respect to xx is xln(x)x+Cx\cdot\ln(x) - x + C, where CC is the constant of integration. We will use this formula to integrate ln(512a)\ln\left(\frac{5}{12}a\right) with respect to aa.
  2. Substitute uu and dada: First, let's set u=512au = \frac{5}{12}a. This means that duda=512\frac{du}{da} = \frac{5}{12}, and thus da=125duda = \frac{12}{5}du. We will substitute uu for 512a\frac{5}{12}a and dada for 125du\frac{12}{5}du in the integral.
  3. Apply integration formula: The integral becomes ln(u)(125)du\int \ln(u) \cdot \left(\frac{12}{5}\right)du. We can pull the constant (125)\left(\frac{12}{5}\right) outside the integral, so it becomes (125)ln(u)du\left(\frac{12}{5}\right) \cdot \int \ln(u) du.
  4. Simplify the expression: Now we apply the integration formula for ln(u)\ln(u), which is uln(u)uu\cdot\ln(u) - u. The integral of ln(u)\ln(u) with respect to uu is uln(u)u+Cu\cdot\ln(u) - u + C.
  5. Final answer: Substituting back in for uu, we get \frac{\(12\)}{\(5\)} \cdot \left(\frac{\(5\)}{\(12\)}a\ln\left(\frac{\(5\)}{\(12\)}a\right) - \frac{\(5\)}{\(12\)}a\right) + C.
  6. Final answer: Substituting back in for \(u, we get 125×(512aln(512a)512a)+C\frac{12}{5} \times \left(\frac{5}{12}a\ln\left(\frac{5}{12}a\right) - \frac{5}{12}a\right) + C. Simplify the expression by multiplying through by 125\frac{12}{5}. This gives us aln(512a)a+Ca\ln\left(\frac{5}{12}a\right) - a + C', where CC' is a new constant of integration that absorbs the 125×512\frac{12}{5}\times\frac{5}{12} factor.
  7. Final answer: Substituting back in for uu, we get 125×(512aln(512a)512a)+C\frac{12}{5} \times \left(\frac{5}{12}a\ln\left(\frac{5}{12}a\right) - \frac{5}{12}a\right) + C. Simplify the expression by multiplying through by 125\frac{12}{5}. This gives us aln(512a)a+Ca\ln\left(\frac{5}{12}a\right) - a + C', where CC' is a new constant of integration that absorbs the 125×512\frac{12}{5}\times\frac{5}{12} factor. The final answer is aln(512a)a+Ca\ln\left(\frac{5}{12}a\right) - a + C', where CC' is the constant of integration.

More problems from Operations with rational exponents