Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

How does h(t)=9th(t) = 9^t change over the interval from t=1t=1 to t=3t=3?\newlineChoices:\newlineh(t) increases by 9%\text{h(t) increases by 9\%}\newlineh(t) increases by a factor of 81 \text{h(t) increases by a factor of 81 }\newlineh(t) decreases by a factor of 9%\text{h(t) decreases by a factor of 9\%}\newlineh(t) decreases by a factor of 18\text{h(t) decreases by a factor of 18}

Full solution

Q. How does h(t)=9th(t) = 9^t change over the interval from t=1t=1 to t=3t=3?\newlineChoices:\newlineh(t) increases by 9%\text{h(t) increases by 9\%}\newlineh(t) increases by a factor of 81 \text{h(t) increases by a factor of 81 }\newlineh(t) decreases by a factor of 9%\text{h(t) decreases by a factor of 9\%}\newlineh(t) decreases by a factor of 18\text{h(t) decreases by a factor of 18}
  1. Given Function: We have: h(t)=9th(t) = 9^t Find the value of h(1)h(1). Substitute t=1t = 1 in h(t)=9th(t) = 9^t. h(1)=91=9h(1) = 9^1 = 9
  2. Find h(1)h(1): We have: h(t)=9th(t) = 9^t Find the value of h(3)h(3). Substitute t=3t = 3 in h(t)=9th(t) = 9^t. h(3)=93=729h(3) = 9^3 = 729
  3. Find h(3)h(3): We found: h(1)=9h(1) = 9 h(3)=729h(3) = 729 Calculate the factor of increase. Factor = h(3)h(1)=7299=81\frac{h(3)}{h(1)} = \frac{729}{9} = 81
  4. Calculate Factor: Change: h(3)/h(1)=81h(3) / h(1) = 81 Is h(t)h(t) increases, decreases, or remains unchanged? The value of h(t)h(t) increases from 99 to 729729. So, h(t)h(t) increases.
  5. Behavior of h(t)h(t): We found: Change: factor of 8181 Behavior of h(t)h(t): increases How does h(t)=9th(t) = 9^t change from t=1t = 1 to t=3t = 3? We found that h(t)h(t) increases and the factor is 8181. h(t)h(t) increases by a factor of 8181.

More problems from Linear functions over unit intervals