Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

How does f(x)=5xf(x)=5^x change over the interval from x=1x=1 to x=3x=3?\newlineChoices:\newlinef(x) decreases by a factor of 10\text{f(x) decreases by a factor of 10}\newlinef(x) increases by 10%\text{f(x) increases by 10\%}\newlinef(x) increases by a factor of 25\text{f(x) increases by a factor of 25}\newlinef(x) increases by a factor of 10\text{f(x) increases by a factor of 10}

Full solution

Q. How does f(x)=5xf(x)=5^x change over the interval from x=1x=1 to x=3x=3?\newlineChoices:\newlinef(x) decreases by a factor of 10\text{f(x) decreases by a factor of 10}\newlinef(x) increases by 10%\text{f(x) increases by 10\%}\newlinef(x) increases by a factor of 25\text{f(x) increases by a factor of 25}\newlinef(x) increases by a factor of 10\text{f(x) increases by a factor of 10}
  1. Given function: We have: f(x)=5xf(x) = 5^x Find the value of f(1)f(1). Substitute x=1x = 1 in f(x)=5xf(x) = 5^x. f(1)=51=5f(1) = 5^1 = 5
  2. Find f(1)f(1): We have: f(x)=5xf(x) = 5^x Find the value of f(3)f(3). Substitute x=3x = 3 in f(x)=5xf(x) = 5^x. f(3)=53=125f(3) = 5^3 = 125
  3. Find f(3)f(3): We found: f(1)=5f(1) = 5 f(3)=125f(3) = 125 Calculate the factor of increase. Factor = f(3)f(1)=1255=25\frac{f(3)}{f(1)} = \frac{125}{5} = 25
  4. Calculate factor: Change: f(3)/f(1)=25f(3) / f(1) = 25 Is f(x)f(x) increasing or decreasing? The value of f(x)f(x) increases from 55 to 125125. So, f(x)f(x) increases.
  5. Behavior of f(x)f(x): We found: Change: factor of 2525 Behavior of f(x)f(x): increases How does f(x)=5xf(x) = 5^x change from x=1x = 1 to x=3x = 3? We found that f(x)f(x) increases and the factor is 2525. f(x)f(x) increases by a factor of 2525.

More problems from Linear functions over unit intervals