Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

How does f(t)=8tf(t)=8^t change over the interval from t=4t=4 to t=6t=6?\newlineChoices: \newlinef(t) decreases by a factor of 16\text{f(t) decreases by a factor of 16}\newlinef(t) increases by 16%\text{f(t) increases by 16\%}\newlinef(t) decreases by factor of 8\text{f(t) decreases by factor of 8}\newlinef(t) increases by a factor of 64\text{f(t) increases by a factor of 64}

Full solution

Q. How does f(t)=8tf(t)=8^t change over the interval from t=4t=4 to t=6t=6?\newlineChoices: \newlinef(t) decreases by a factor of 16\text{f(t) decreases by a factor of 16}\newlinef(t) increases by 16%\text{f(t) increases by 16\%}\newlinef(t) decreases by factor of 8\text{f(t) decreases by factor of 8}\newlinef(t) increases by a factor of 64\text{f(t) increases by a factor of 64}
  1. Given function: We have:
    f(t)=8t f(t) = 8^t
    Find the value of f(4) f(4) .
    Substitute t=4 t = 4 in f(t)=8t f(t) = 8^t .
    f(4)=84 f(4) = 8^4
    f(4)=4096 f(4) = 4096
  2. Find f(4)f(4): We have: f(t)=8tf(t) = 8^t Find the value of f(6)f(6). Substitute t=6t = 6 in f(t)=8tf(t) = 8^t. f(6)=86f(6) = 8^6 f(6)=262144f(6) = 262144
  3. Find f(6)f(6): We found: f(4)=4096f(4) = 4096 f(6)=262144f(6) = 262144 Divide f(6)f(6) by f(4)f(4) to find the factor of change. f(6)/f(4)=262144/4096=64f(6) / f(4) = 262144 / 4096 = 64
  4. Calculate factor of change: Change: f(6)f(4)=64\frac{f(6)}{f(4)} = 64 Is f(t)f(t) increasing or decreasing? The value of f(t)f(t) increases from 40964096 to 262144262144. So, f(t)f(t) increases.
  5. Behavior of f(t)f(t): We found: Change: factor of 6464 Behavior of f(t)f(t): increases How does f(t)=8tf(t) = 8^t change from t=4t = 4 to t=6t = 6? We found that f(t)f(t) increases and the factor is 6464. f(t)f(t) increases by a factor of 6464.

More problems from Linear functions over unit intervals