Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

How does f(t)=7tf(t)=7^t change over the interval from t=1t=1 to t=3t=3?\newlineChoices:\newlinef(t) decreases by a factor of 7\text{f(t) decreases by a factor of 7}\newlinef(t) increases by factor of 7\text{f(t) increases by factor of 7}\newlinef(t) decreases by 7%\text{f(t) decreases by 7\%}\newlinef(t) increases by a factor of 49\text{f(t) increases by a factor of 49}

Full solution

Q. How does f(t)=7tf(t)=7^t change over the interval from t=1t=1 to t=3t=3?\newlineChoices:\newlinef(t) decreases by a factor of 7\text{f(t) decreases by a factor of 7}\newlinef(t) increases by factor of 7\text{f(t) increases by factor of 7}\newlinef(t) decreases by 7%\text{f(t) decreases by 7\%}\newlinef(t) increases by a factor of 49\text{f(t) increases by a factor of 49}
  1. Given function: We have: f(t)=7tf(t) = 7^t Find the value of f(1)f(1). Substitute t=1t = 1 in f(t)=7tf(t) = 7^t. f(1)=71=7f(1) = 7^1 = 7
  2. Find f(1)f(1): We have: f(t)=7tf(t) = 7^t Find the value of f(3)f(3). Substitute t=3t = 3 in f(t)=7tf(t) = 7^t. f(3)=73=343f(3) = 7^3 = 343
  3. Find f(3)f(3): We found: f(1)=7f(1) = 7 f(3)=343f(3) = 343 Calculate the change. f(3)f(1)=3437=49\frac{f(3)}{f(1)} = \frac{343}{7} = 49
  4. Calculate change: Change: f(3)f(1)=49\frac{f(3)}{f(1)} = 49 Is f(t)f(t) increasing or decreasing? The value of f(t)f(t) increases from 77 to 343343. So, f(t)f(t) increases.
  5. Behavior of f(t)f(t): We found: Change: 4949 Behavior of f(t)f(t): increases How does f(t)=7tf(t) = 7^t change from t=1t = 1 to t=3t = 3? We found that f(t)f(t) increases and the factor is 4949. f(t)f(t) increases by a factor of 4949.

More problems from Linear functions over unit intervals