Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Heron's Formula: Unit test
The area of the triangle with sides 
11cm,9cm and 
12cm is of the form 
ysqrt35cm^(2).
Find the value of 
y.

◻

Heron's Formula: Unit test\newlineThe area of the triangle with sides 11 cm,9 cm 11 \mathrm{~cm}, 9 \mathrm{~cm} and 12 cm 12 \mathrm{~cm} is of the form y35 cm2 y \sqrt{35} \mathrm{~cm}^{2} .\newlineFind the value of y y .\newline \square

Full solution

Q. Heron's Formula: Unit test\newlineThe area of the triangle with sides 11 cm,9 cm 11 \mathrm{~cm}, 9 \mathrm{~cm} and 12 cm 12 \mathrm{~cm} is of the form y35 cm2 y \sqrt{35} \mathrm{~cm}^{2} .\newlineFind the value of y y .\newline \square
  1. Calculate semi-perimeter: Step 11: Calculate the semi-perimeter ss of the triangle.\newlines=a+b+c2s = \frac{a + b + c}{2}\newlines=11+9+122s = \frac{11 + 9 + 12}{2}\newlines=322s = \frac{32}{2}\newlines=16cms = 16 \, \text{cm}
  2. Apply Heron's Formula: Step 22: Apply Heron's Formula to find the area AA.A=s(sa)(sb)(sc)A = \sqrt{s(s - a)(s - b)(s - c)}A=16(1611)(169)(1612)A = \sqrt{16(16 - 11)(16 - 9)(16 - 12)}A=16×5×7×4A = \sqrt{16 \times 5 \times 7 \times 4}A=2240A = \sqrt{2240}A=35×64A = \sqrt{35 \times 64}A=835 cm2A = 8\sqrt{35} \text{ cm}^2
  3. Compare and find yy: Step 33: Compare the expression 8358\sqrt{35} cm2^2 with y35y\sqrt{35} cm2^2 to find yy. From A=y35A = y\sqrt{35} cm2^2, we have 8358\sqrt{35} cm2^2 = y35y\sqrt{35} cm2^2 Thus, 8358\sqrt{35}22

More problems from Csc, sec, and cot of special angles