Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(x)={[5x," for "x < -2],[x^(3)-2," for "x >= -2]:}
Find 
lim_(x rarr-2)h(x).
Choose 1 answer:
(A) -10
(B) -2
(C) 10

h(x)={5x,amp;for xlt;2 x32,amp;for x2h(x)=\begin{cases} 5x, &amp; \text{for } x &lt; -2 \ x^{3}-2, &amp; \text{for } x \geq -2 \end{cases}\newline Find limx2h(x)\lim_{x \to -2}h(x).\newline Choose 11 answer:\newline (A) 10-10\newline (B) 2-2\newline (C) 1010

Full solution

Q. h(x)={5x,for x<2 x32,for x2h(x)=\begin{cases} 5x, & \text{for } x < -2 \ x^{3}-2, & \text{for } x \geq -2 \end{cases}\newline Find limx2h(x)\lim_{x \to -2}h(x).\newline Choose 11 answer:\newline (A) 10-10\newline (B) 2-2\newline (C) 1010
  1. Define h(x)h(x): We need to find the limit of h(x)h(x) as xx approaches 2-2. The function h(x)h(x) is defined piecewise:\newlineh(x)={5xamp;for xlt;2, x32amp;for x2h(x) = \begin{cases} 5x &amp; \text{for } x &lt; -2,\ x^3 - 2 &amp; \text{for } x \geq -2 \end{cases}\newlineTo find the limit as xx approaches 2-2, we need to consider the value from both sides of 2-2.
  2. Limit from left side: First, let's find the limit from the left side xx approaching 2-2 from values less than 2-2. For x < -2, h(x)=5xh(x) = 5x.limx2h(x)=limx25x=5×(2)=10\lim_{x \to -2^-} h(x) = \lim_{x \to -2^-} 5x = 5 \times (-2) = -10.
  3. Limit from right side: Now, let's find the limit from the right side xx approaching 2-2 from values greater than or equal to 2-2. For x2x \geq -2, h(x)=x32h(x) = x^3 - 2.limx2+h(x)=limx2+(x32)=(2)32=82=10\lim_{x \to -2^+} h(x) = \lim_{x \to -2^+} (x^3 - 2) = (-2)^3 - 2 = -8 - 2 = -10.
  4. Final limit: Since the limit from the left side and the limit from the right side are equal, the limit of h(x)h(x) as xx approaches 2-2 exists and is equal to 10-10.\newlinelimx2h(x)=10\lim_{x \to -2} h(x) = -10.

More problems from Compare linear and exponential growth