Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(x)={[(1)/(x-5),",",x=0],[-(x-4)^(2),",",x=7],[3x-2,",",x!=0]:}

h(x)={1x5amp;,x=0(x4)2amp;,x=73x2amp;,x0h(6)= \begin{array}{l}h(x)=\left\{\begin{array}{ll}\frac{1}{x-5} & , \quad x=0 \\ -(x-4)^{2} & , \quad x=7 \\ 3 x-2 & , \quad x \neq 0\end{array}\right. \\ h(6)= \\\end{array}

Full solution

Q. h(x)={1x5,x=0(x4)2,x=73x2,x0h(6)= \begin{array}{l}h(x)=\left\{\begin{array}{ll}\frac{1}{x-5} & , \quad x=0 \\ -(x-4)^{2} & , \quad x=7 \\ 3 x-2 & , \quad x \neq 0\end{array}\right. \\ h(6)= \\\end{array}
  1. Evaluate h(x)h(x) at x=0x = 0: The function h(x)h(x) is defined piecewise, meaning it has different expressions for different values of xx. We need to evaluate the function at x=0x = 0, x=7x = 7, and for x0x \neq 0.
  2. Evaluate h(x)h(x) at x=7x = 7: First, let's evaluate h(x)h(x) at x=0x = 0. According to the function definition, h(x)=1(x5)h(x) = \frac{1}{(x-5)} when x=0x = 0. Let's plug in x=0x = 0 into this expression.\newlineh(0)=1(05)=1(5)=15h(0) = \frac{1}{(0-5)} = \frac{1}{(-5)} = -\frac{1}{5}.
  3. Evaluate h(x)h(x) for x0x \neq 0: Next, we evaluate h(x)h(x) at x=7x = 7. The function definition tells us that h(x)=(x4)2h(x) = -(x-4)^2 when x=7x = 7. Let's plug in x=7x = 7 into this expression.\newlineh(7)=(74)2=(3)2=9h(7) = -(7-4)^2 = -(3)^2 = -9.
  4. Evaluate h(x)h(x) for x0x \neq 0: Next, we evaluate h(x)h(x) at x=7x = 7. The function definition tells us that h(x)=(x4)2h(x) = -(x-4)^2 when x=7x = 7. Let's plug in x=7x = 7 into this expression.\newlineh(7)=(74)2=(3)2=9h(7) = -(7-4)^2 = -(3)^2 = -9.Lastly, we need to evaluate h(x)h(x) for x0x \neq 0. The function definition for this case is x0x \neq 000. This expression is valid for all x0x \neq 011 except x0x \neq 022. There is no specific value to calculate here, as the expression x0x \neq 033 is the value of h(x)h(x) for all x0x \neq 0.

More problems from Compare linear and exponential growth