Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(t)=56-4.9t^(2)
The function models 
h, the height of a flower pot in meters, 
t seconds after it falls from a fourth floor balcony. What is the height of the flower pot, in meters, 3 seconds after it falls?
Choose 1 answer:
(A) 51.1
(B) 44.1
(C) 36.4
(D) 11.9

h(t)=564.9t2 h(t)=56-4.9 t^{2} \newlineThe function models h h , the height of a flower pot in meters, t t seconds after it falls from a fourth floor balcony. What is the height of the flower pot, in meters, 33 seconds after it falls?\newlineChoose 11 answer:\newline(A) 5151.11\newline(B) 4444.11\newline(C) 3636.44\newline(D) 1111.99

Full solution

Q. h(t)=564.9t2 h(t)=56-4.9 t^{2} \newlineThe function models h h , the height of a flower pot in meters, t t seconds after it falls from a fourth floor balcony. What is the height of the flower pot, in meters, 33 seconds after it falls?\newlineChoose 11 answer:\newline(A) 5151.11\newline(B) 4444.11\newline(C) 3636.44\newline(D) 1111.99
  1. Identify function and representation: Identify the given function and what it represents.\newlineThe function h(t)=564.9t2h(t) = 56 - 4.9t^2 models the height of a flower pot in meters, tt seconds after it falls from a fourth floor balcony.
  2. Substitute time into function: Substitute the given time into the function to find the height at that time.\newlineWe need to find h(3)h(3), which means we will substitute t=3t = 3 into the function.\newlineh(3)=564.9(3)2h(3) = 56 - 4.9(3)^2
  3. Calculate value of h(3)h(3): Calculate the value of h(3)h(3).\newlineh(3)=564.9(3)2h(3) = 56 - 4.9(3)^2\newlineh(3)=564.9(9)h(3) = 56 - 4.9(9)\newlineh(3)=5644.1h(3) = 56 - 44.1\newlineh(3)=11.9h(3) = 11.9

More problems from Compare linear and exponential growth