Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

sqrt(-36x^(4)y^(10))

-6x^((1)/(2))y^((1)/(5))

6ix^(2)y^(5)

-6x^(2)y^(5)

6ix^((1)/(2))y^((1)/(5))

Given x>0 and y>0 , select the expression that is equivalent to\newline36x4y10 \sqrt{-36 x^{4} y^{10}} \newline6x12y15 -6 x^{\frac{1}{2}} y^{\frac{1}{5}} \newline6ix2y5 6 i x^{2} y^{5} \newline6x2y5 -6 x^{2} y^{5} \newline6ix12y15 6 i x^{\frac{1}{2}} y^{\frac{1}{5}}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline36x4y10 \sqrt{-36 x^{4} y^{10}} \newline6x12y15 -6 x^{\frac{1}{2}} y^{\frac{1}{5}} \newline6ix2y5 6 i x^{2} y^{5} \newline6x2y5 -6 x^{2} y^{5} \newline6ix12y15 6 i x^{\frac{1}{2}} y^{\frac{1}{5}}
  1. Identify Given Expression: Identify the given expression and the mathematical operation to be performed.\newlineWe need to find the equivalent expression for 36x4y10\sqrt{-36x^{4}y^{10}}.
  2. Use Imaginary Unit: Recognize that the square root of a negative number involves the imaginary unit 'ii', where i2=1i^2 = -1. Therefore, 36x4y10\sqrt{-36x^{4}y^{10}} can be written as i36x4y10i \cdot \sqrt{36x^{4}y^{10}}.
  3. Simplify Positive Terms: Simplify the square root of the positive part of the expression.\newlineSince 3636, x4x^{4}, and y10y^{10} are all perfect squares, we can take the square root of each term separately.\newline36x4y10=36×x4×y10\sqrt{36x^{4}y^{10}} = \sqrt{36} \times \sqrt{x^{4}} \times \sqrt{y^{10}}.
  4. Calculate Square Roots: Calculate the square root of each term.\newline36=6\sqrt{36} = 6, x4=x42=x2\sqrt{x^{4}} = x^{\frac{4}{2}} = x^2, and y10=y102=y5\sqrt{y^{10}} = y^{\frac{10}{2}} = y^5.\newlineSo, 36x4y10=6×x2×y5\sqrt{36x^{4}y^{10}} = 6 \times x^2 \times y^5.
  5. Combine Results: Combine the results from the previous steps to get the final expression.\newlineThe equivalent expression is i×6×x2×y5i \times 6 \times x^2 \times y^5, which can be written as 6ix2y56ix^2y^5.

More problems from Operations with rational exponents