Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

root(3)(216x^(10)y^(6))

6x^((10)/(3))y^(2)

72x^((10)/(3))y^(2)

72x^(30)y^(18)

6x^(30)y^(18)

Given x>0 and y>0 , select the expression that is equivalent to\newline216x10y63 \sqrt[3]{216 x^{10} y^{6}} \newline6x103y2 6 x^{\frac{10}{3}} y^{2} \newline72x103y2 72 x^{\frac{10}{3}} y^{2} \newline72x30y18 72 x^{30} y^{18} \newline6x30y18 6 x^{30} y^{18}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline216x10y63 \sqrt[3]{216 x^{10} y^{6}} \newline6x103y2 6 x^{\frac{10}{3}} y^{2} \newline72x103y2 72 x^{\frac{10}{3}} y^{2} \newline72x30y18 72 x^{30} y^{18} \newline6x30y18 6 x^{30} y^{18}
  1. Identify Cube Root: Identify the cube root of the given expression.\newlineThe cube root of a product is the product of the cube roots of each factor.\newlineSo, we have 216x10y63=2163×x103×y63\sqrt[3]{216x^{10}y^{6}} = \sqrt[3]{216} \times \sqrt[3]{x^{10}} \times \sqrt[3]{y^{6}}.
  2. Simplify 216216: Simplify the cube root of 216216. 216216 is a perfect cube because 216=63216 = 6^3. Therefore, 2163=6\sqrt[3]{216} = 6.
  3. Simplify x10x^{10}: Simplify the cube root of x10x^{10}. We can express x10x^{10} as x9×xx^{9} \times x to make it easier to take the cube root. The cube root of x9x^{9} is x93=x3x^{\frac{9}{3}} = x^{3}. The cube root of xx is x13x^{\frac{1}{3}}. Therefore, x103=x3×x13=x3+13=x103\sqrt[3]{x^{10}} = x^{3} \times x^{\frac{1}{3}} = x^{3 + \frac{1}{3}} = x^{\frac{10}{3}}.
  4. Simplify y6y^6: Simplify the cube root of y6y^6. Since y6y^6 is a perfect cube (y6=(y2)3y^6 = (y^2)^3), the cube root of y6y^6 is y6/3=y2y^{6/3} = y^2.
  5. Combine Simplified Roots: Combine the simplified cube roots.\newlineWe have 6×x103×y26 \times x^{\frac{10}{3}} \times y^2.\newlineThis is the expression equivalent to the original cube root.

More problems from Operations with rational exponents