Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

root(4)(256x^(8)y^(10))

64x^(4)y^(6)

4x^(2)y^((5)/(2))

4x^(4)y^(6)

64x^(2)y^((5)/(2))

Given x>0 and y>0 , select the expression that is equivalent to\newline256x8y104 \sqrt[4]{256 x^{8} y^{10}} \newline64x4y6 64 x^{4} y^{6} \newline4x2y52 4 x^{2} y^{\frac{5}{2}} \newline4x4y6 4 x^{4} y^{6} \newline64x2y52 64 x^{2} y^{\frac{5}{2}}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline256x8y104 \sqrt[4]{256 x^{8} y^{10}} \newline64x4y6 64 x^{4} y^{6} \newline4x2y52 4 x^{2} y^{\frac{5}{2}} \newline4x4y6 4 x^{4} y^{6} \newline64x2y52 64 x^{2} y^{\frac{5}{2}}
  1. Identify Given Expression: Identify the given expression and the operation to be performed.\newlineThe given expression is the fourth root of 256x8y10256x^8y^{10}, which can be written as (256x8y10)14(256x^8y^{10})^{\frac{1}{4}}.
  2. Simplify Constant Term: Simplify the constant term under the fourth root.\newlineThe fourth root of 256256 is 44 because 44=2564^4 = 256.\newlineSo, (256)1/4=4(256)^{1/4} = 4.
  3. Simplify Variable Terms: Simplify the variable terms under the fourth root.\newlineFor x8x^8, the fourth root is x(8/4)=x2x^{(8/4)} = x^2.\newlineFor y10y^{10}, the fourth root is y(10/4)=y(5/2)y^{(10/4)} = y^{(5/2)} or y2.5y^{2.5}.
  4. Combine Simplified Terms: Combine the simplified terms. The expression equivalent to the fourth root of 256x8y10256x^8y^{10} is 4x2y524x^2y^{\frac{5}{2}}.

More problems from Operations with rational exponents