Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

root(3)(216x^(12)y^(8))

72x^(4)y^((8)/(3))

72x^((1)/(4))y^((3)/(8))

6x^((1)/(4))y^((3)/(8))

6x^(4)y^((8)/(3))

Given x>0 and y>0 , select the expression that is equivalent to\newline216x12y83 \sqrt[3]{216 x^{12} y^{8}} \newline72x4y83 72 x^{4} y^{\frac{8}{3}} \newline72x14y38 72 x^{\frac{1}{4}} y^{\frac{3}{8}} \newline6x14y38 6 x^{\frac{1}{4}} y^{\frac{3}{8}} \newline6x4y83 6 x^{4} y^{\frac{8}{3}}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline216x12y83 \sqrt[3]{216 x^{12} y^{8}} \newline72x4y83 72 x^{4} y^{\frac{8}{3}} \newline72x14y38 72 x^{\frac{1}{4}} y^{\frac{3}{8}} \newline6x14y38 6 x^{\frac{1}{4}} y^{\frac{3}{8}} \newline6x4y83 6 x^{4} y^{\frac{8}{3}}
  1. Identify Cube Root: Identify the cube root of the given expression.\newlineThe cube root of a product is the product of the cube roots of each factor.\newlineSo, we need to find the cube root of 216216, x12x^{12}, and y8y^{8} separately.
  2. Simplify 216216: Simplify the cube root of 216216. \newline216216 is a perfect cube because 216=63216 = 6^3. \newlineTherefore, the cube root of 216216 is 66.
  3. Simplify x12x^{12}: Simplify the cube root of x12x^{12}. The exponent rule for roots states that amn=amn\sqrt[n]{a^m} = a^{\frac{m}{n}}. Applying this rule, we get x123=x123=x4\sqrt[3]{x^{12}} = x^{\frac{12}{3}} = x^4.
  4. Simplify y8y^{8}: Simplify the cube root of y8y^{8}. Using the same exponent rule, we get y83=y83\sqrt[3]{y^{8}} = y^{\frac{8}{3}}.
  5. Combine Simplified Roots: Combine the simplified cube roots.\newlineWe have the cube root of 216216 as 66, x12x^{12} as x4x^4, and y8y^{8} as y8/3y^{8/3}.\newlineMultiplying these together gives us 6x4y8/36x^4y^{8/3}.
  6. Compare with Options: Compare the result with the given options.\newlineThe expression 6x4y(8/3)6x^4y^{(8/3)} matches one of the given options.

More problems from Operations with rational exponents