Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

root(4)(81x^(2)y^(18))

9x^(8)y^(72)

9x^((1)/(2))y^((9)/(2))

3x^(8)y^(72)

3x^((1)/(2))y^((9)/(2))

Given x>0 and y>0 , select the expression that is equivalent to\newline81x2y184 \sqrt[4]{81 x^{2} y^{18}} \newline9x8y72 9 x^{8} y^{72} \newline9x12y92 9 x^{\frac{1}{2}} y^{\frac{9}{2}} \newline3x8y72 3 x^{8} y^{72} \newline3x12y92 3 x^{\frac{1}{2}} y^{\frac{9}{2}}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline81x2y184 \sqrt[4]{81 x^{2} y^{18}} \newline9x8y72 9 x^{8} y^{72} \newline9x12y92 9 x^{\frac{1}{2}} y^{\frac{9}{2}} \newline3x8y72 3 x^{8} y^{72} \newline3x12y92 3 x^{\frac{1}{2}} y^{\frac{9}{2}}
  1. Identify Given Expression: Identify the given expression and the operation to be performed.\newlineThe given expression is the fourth root of 81x2y1881x^{2}y^{18}, which can be written as (81x2y18)1/4(81x^{2}y^{18})^{1/4}.
  2. Break Down Prime Factors: Break down the expression inside the root into prime factors and powers that are easily manageable with the fourth root. \newline8181 is a perfect square and can be written as 343^4. The variables xx and yy are already in power form.\newline(81x2y18)1/4=(34x2y18)1/4(81x^{2}y^{18})^{1/4} = (3^4x^{2}y^{18})^{1/4}
  3. Apply Exponent Property: Apply the property of exponents which states that (am)n=amn(a^m)^n = a^{m*n} to simplify the expression.\newline(34x2y18)14=3414x214y1814(3^{4}x^{2}y^{18})^{\frac{1}{4}} = 3^{4*\frac{1}{4}}x^{2*\frac{1}{4}}y^{18*\frac{1}{4}}
  4. Simplify Exponents: Simplify the exponents by multiplying them.\newline34×(1/4)=31=33^{4\times(1/4)} = 3^1 = 3\newlinex2×(1/4)=x1/2x^{2\times(1/4)} = x^{1/2}\newliney18×(1/4)=y18/4=y9/2y^{18\times(1/4)} = y^{18/4} = y^{9/2}
  5. Combine Simplified Terms: Combine the simplified terms to get the final expression.\newlineThe equivalent expression is 3x(1/2)y(9/2)3x^{(1/2)}y^{(9/2)}.

More problems from Operations with rational exponents