Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

root(4)(81x^(18)y^(8))

9x^((2)/(9))y^((1)/(2))

9x^((9)/(2))y^(2)

3x^((2)/(9))y^((1)/(2))

3x^((9)/(2))y^(2)

Given x>0 and y>0 , select the expression that is equivalent to\newline81x18y84 \sqrt[4]{81 x^{18} y^{8}} \newline9x29y12 9 x^{\frac{2}{9}} y^{\frac{1}{2}} \newline9x92y2 9 x^{\frac{9}{2}} y^{2} \newline3x29y12 3 x^{\frac{2}{9}} y^{\frac{1}{2}} \newline3x92y2 3 x^{\frac{9}{2}} y^{2}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline81x18y84 \sqrt[4]{81 x^{18} y^{8}} \newline9x29y12 9 x^{\frac{2}{9}} y^{\frac{1}{2}} \newline9x92y2 9 x^{\frac{9}{2}} y^{2} \newline3x29y12 3 x^{\frac{2}{9}} y^{\frac{1}{2}} \newline3x92y2 3 x^{\frac{9}{2}} y^{2}
  1. Identify Given Expression: Identify the given expression and the operation to be performed.\newlineThe given expression is the fourth root of 81x18y881x^{18}y^{8}, which can be written as (81x18y8)1/4(81x^{18}y^{8})^{1/4}.
  2. Rewrite as Product of Powers: Rewrite the expression inside the root as a product of powers.\newline8181 is a perfect square and can be written as 343^4. Also, x18x^{18} and y8y^{8} can be written as x184x^{\frac{18}{4}} and y84y^{\frac{8}{4}} respectively.\newline(81x18y8)14=(34×x18×y8)14(81x^{18}y^{8})^{\frac{1}{4}} = (3^4 \times x^{18} \times y^{8})^{\frac{1}{4}}
  3. Apply Exponent Property: Apply the property of exponents which states that (am)n=amn(a^m)^n = a^{m*n} to simplify the expression.\newline(34×x18×y8)1/4=34×(1/4)×x18×(1/4)×y8×(1/4)(3^4 \times x^{18} \times y^{8})^{1/4} = 3^{4\times(1/4)} \times x^{18\times(1/4)} \times y^{8\times(1/4)}
  4. Simplify Exponents: Simplify the exponents by multiplying them.\newline34×(14)=31=33^{4\times(\frac{1}{4})} = 3^1 = 3\newlinex18×(14)=x184=x4.5=x92x^{18\times(\frac{1}{4})} = x^{\frac{18}{4}} = x^{4.5} = x^{\frac{9}{2}}\newliney8×(14)=y84=y2y^{8\times(\frac{1}{4})} = y^{\frac{8}{4}} = y^2
  5. Combine Simplified Terms: Combine the simplified terms to get the final expression.\newlineThe equivalent expression is 3×x92×y23 \times x^{\frac{9}{2}} \times y^2.
  6. Check Answer Choices: Check the answer choices to see which one matches the simplified expression.\newlineThe correct answer choice is 3x(9/2)y23x^{(9/2)}y^2.

More problems from Operations with rational exponents