Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

root(4)(81x^(6)y^(10))

9x^((3)/(2))y^((5)/(2))

3x^((2)/(3))y^((2)/(5))

3x^((3)/(2))y^((5)/(2))

9x^((2)/(3))y^((2)/(5))

Given x>0 and y>0 , select the expression that is equivalent to\newline81x6y104 \sqrt[4]{81 x^{6} y^{10}} \newline9x32y52 9 x^{\frac{3}{2}} y^{\frac{5}{2}} \newline3x23y25 3 x^{\frac{2}{3}} y^{\frac{2}{5}} \newline3x32y52 3 x^{\frac{3}{2}} y^{\frac{5}{2}} \newline9x23y25 9 x^{\frac{2}{3}} y^{\frac{2}{5}}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline81x6y104 \sqrt[4]{81 x^{6} y^{10}} \newline9x32y52 9 x^{\frac{3}{2}} y^{\frac{5}{2}} \newline3x23y25 3 x^{\frac{2}{3}} y^{\frac{2}{5}} \newline3x32y52 3 x^{\frac{3}{2}} y^{\frac{5}{2}} \newline9x23y25 9 x^{\frac{2}{3}} y^{\frac{2}{5}}
  1. Identify Given Expression: Identify the given expression and the goal.\newlineWe need to simplify the fourth root of 81x6y104\sqrt[4]{81x^{6}y^{10}}.
  2. Express 8181 as Power: Express 8181 as a power of 33.\newline8181 is 33 to the power of 44, since 3×3×3×3=813 \times 3 \times 3 \times 3 = 81.\newlineSo, we can write 8181 as 343^4.
  3. Rewrite Using Power of 33: Rewrite the given expression using the power of 33.\newlineThe given expression 81x6y104\sqrt[4]{81x^{6}y^{10}} can be rewritten as 34x6y104\sqrt[4]{3^{4}x^{6}y^{10}}.
  4. Apply Property of Roots: Apply the property of roots to powers inside the radical.\newlineThe fourth root of a power can be simplified by dividing the exponent by 44.\newlineSo, 344\sqrt[4]{3^4} becomes 3(4/4)3^{(4/4)}, which simplifies to 313^1 or just 33.
  5. Simplify xx and yy Terms: Simplify the xx and yy terms inside the radical.\newlineFor x6x^{6}, we divide the exponent by 44 to get x64x^{\frac{6}{4}}, which simplifies to x32x^{\frac{3}{2}}.\newlineFor y10y^{10}, we divide the exponent by 44 to get yy00, which simplifies to yy11.
  6. Combine Simplified Terms: Combine the simplified terms. The expression becomes 3×x32×y523 \times x^{\frac{3}{2}} \times y^{\frac{5}{2}}.
  7. Check Provided Options: Check if any of the provided options match the simplified expression.\newlineThe expression 3×x32×y523 \times x^{\frac{3}{2}} \times y^{\frac{5}{2}} matches the third option: 3x(32)y(52)3x^{\left(\frac{3}{2}\right)}y^{\left(\frac{5}{2}\right)}.

More problems from Operations with rational exponents