Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
y=(x)/(4-x^(4)), find 
(dy)/(dx) in simplified form.

Given the function y=x4x4y=\frac{x}{4-x^{4}}, find dydx\frac{dy}{dx} in simplified form.

Full solution

Q. Given the function y=x4x4y=\frac{x}{4-x^{4}}, find dydx\frac{dy}{dx} in simplified form.
  1. Identify Function and Need: Identify the function and the need to differentiate with respect to xx.\newlineFunction: y=x4x4y = \frac{x}{4 - x^4}\newlineWe need to find dydx\frac{dy}{dx}.
  2. Apply Quotient Rule: Apply the quotient rule for differentiation, which is (vuuv)/(v2)(v'u - uv') / (v^2) where u=xu = x and v=4x4v = 4 - x^4. Differentiate uu: u=1u' = 1 Differentiate vv: v=4x3v' = -4x^3 (using the power rule) Now apply the quotient rule.
  3. Substitute Derivatives: Substitute the derivatives into the quotient rule formula.\newlinedydx=(4x4)(1)(x)(4x3)(4x4)2\frac{dy}{dx} = \frac{(4 - x^4)(1) - (x)(-4x^3)}{(4 - x^4)^2}\newlineSimplify the numerator: (4x4+4x4)=4+3x4(4 - x^4 + 4x^4) = 4 + 3x^4

More problems from Sin, cos, and tan of special angles