Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=-20-3x

h(x)=((1)/(2))^(x)
Evaluate.

(g@h)(-2)=

g(x)=203x g(x)=-20-3 x \newlineh(x)=(12)x h(x)=\left(\frac{1}{2}\right)^{x} \newlineEvaluate.\newline(gh)(2)= (g \circ h)(-2)=

Full solution

Q. g(x)=203x g(x)=-20-3 x \newlineh(x)=(12)x h(x)=\left(\frac{1}{2}\right)^{x} \newlineEvaluate.\newline(gh)(2)= (g \circ h)(-2)=
  1. Understand Function Composition: Understand the composition of functions. The composition of two functions (gh)(x)(g \circ h)(x) means we first apply hh to xx, and then apply gg to the result of h(x)h(x).
  2. Evaluate h(2)h(-2): Evaluate h(2)h(-2).
    h(x)=(12)xh(x) = (\frac{1}{2})^x
    h(2)=(12)2=22=4h(-2) = (\frac{1}{2})^{-2} = 2^2 = 4
  3. Evaluate g(h(2))g(h(-2)): Evaluate g(h(2))g(h(-2)).\newlineNow we need to apply gg to the result from Step 22, which is 44.\newlineg(x)=203xg(x) = -20 - 3x\newlineg(4)=203(4)=2012=32g(4) = -20 - 3(4) = -20 - 12 = -32
  4. Combine Results: Combine the results to find (g@h)(2)(g@h)(-2).(g@h)(2)=g(h(2))=g(4)=32(g@h)(-2) = g(h(-2)) = g(4) = -32

More problems from Compare linear and exponential growth