Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

G(0,0)G(0,0) and H(2,10)H(2,10) are the endpoints of a line segment. What is the midpoint MM of that line segment?\newlineWrite the coordinates as decimals or integers.\newlineM=(_,_)M = (\_,\_)

Full solution

Q. G(0,0)G(0,0) and H(2,10)H(2,10) are the endpoints of a line segment. What is the midpoint MM of that line segment?\newlineWrite the coordinates as decimals or integers.\newlineM=(_,_)M = (\_,\_)
  1. Identify midpoint formula: Identify the midpoint formula for a line segment.\newlineThe midpoint of a line segment with endpoints (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by the formula:\newlineMidpoint M=(x1+x22,y1+y22)M = \left(\frac{x_1 + x_2}{2} , \frac{y_1 + y_2}{2}\right).
  2. Apply formula to endpoints: Apply the midpoint formula to the given endpoints G(0,0)G(0,0) and H(2,10)H(2,10). Substitute (0,0)(0, 0) for (x1,y1)(x_1, y_1) and (2,10)(2, 10) for (x2,y2)(x_2, y_2) into the midpoint formula. M=(0+22,0+102)M = \left(\frac{0 + 2}{2} , \frac{0 + 10}{2}\right).
  3. Calculate midpoint coordinates: Calculate the coordinates of the midpoint MM. \newlineM=((0+2)/2,(0+10)/2)M = ((0 + 2)/2 , (0 + 10)/2)\newlineM=(2/2,10/2)M = (2/2, 10/2)\newline$M = (\(1\), \(5\)).

More problems from Midpoint formula: find the midpoint