Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Function ff is a quadratic function. The graph of y=f(x)y = f(x) in the xyxy-plane has a vertex at (6,10)(6, 10), contains the point (5,8)(5, 8), and has a yy-intercept at (0,a)(0, a). The graph of y=4f(x)y = 4f(x) has a yy-intercept at (0,b)(0, b). What is the positive difference between aa and bb?

Full solution

Q. Function ff is a quadratic function. The graph of y=f(x)y = f(x) in the xyxy-plane has a vertex at (6,10)(6, 10), contains the point (5,8)(5, 8), and has a yy-intercept at (0,a)(0, a). The graph of y=4f(x)y = 4f(x) has a yy-intercept at (0,b)(0, b). What is the positive difference between aa and bb?
  1. Vertex Form Equation: Vertex form of quadratic function: y=a(xh)2+k y = a(x - h)^2 + k \newlineGiven vertex: (66, 1010)\newlineEquation: y=a(x6)2+10 y = a(x - 6)^2 + 10
  2. Substitute Point: Point (55, 88) lies on the parabola.\newlineSubstitute (55, 88) into the equation: 8=a(56)2+10 8 = a(5 - 6)^2 + 10 \newline8=a(1)2+10 8 = a(1)^2 + 10 \newline8=a+10 8 = a + 10 \newlineSolve for a: a=2 a = -2
  3. Find Y-Intercept: Equation of the parabola: y=2(x6)2+10 y = -2(x - 6)^2 + 10 \newlineFind y-intercept (00, a): \newlineSubstitute x = 00: y=2(06)2+10 y = -2(0 - 6)^2 + 10 \newliney=2(36)+10 y = -2(36) + 10 \newliney=72+10 y = -72 + 10 \newliney=62 y = -62 \newlineSo, a = 62-62
  4. Graph Transformation: Graph of y=4f(x) y = 4f(x) \newlineNew equation: y=4[2(x6)2+10] y = 4[-2(x - 6)^2 + 10] \newliney=8(x6)2+40 y = -8(x - 6)^2 + 40 \newlineFind y-intercept (00, b):\newlineSubstitute x = 00: y=8(06)2+40 y = -8(0 - 6)^2 + 40 \newliney=8(36)+40 y = -8(36) + 40 \newliney=288+40 y = -288 + 40 \newliney=248 y = -248 \newlineSo, b = 248-248
  5. Calculate Positive Difference: Positive difference between a and b:\newlineab=62(248) |a - b| = |-62 - (-248)| \newlineab=62+248 |a - b| = |-62 + 248| \newlineab=186 |a - b| = |186| \newlinePositive difference = 186186

More problems from Write a quadratic function from its x-intercepts and another point