For each function, state whether it is linear, quadratic, or exponential.Function 1Function 2Function 3xyxyxy33519y0y1y2y3y0y53y7y8y939y2x3x4x5\bar{4}\(\newline\)\(x\)\(6\)\(\newline\)\bar{\(5\)}y5x8x9y3\bar{6}$\(\newline\)\(y\)\(1\)\(\newline\)\(\newline\)Linear\(\newline\)Linear\(\newline\)Linear\(\newline\)Quadratic\(\newline\)Quadratic\(\newline\)Quadratic\(\newline\)Exponential\(\newline\)Exponential\(\newline\)Exponential\(\newline\)None of the above\(\newline\)None of the above\(\newline\)None of the above
Q. For each function, state whether it is linear, quadratic, or exponential.Function 1Function 2Function 3xyxyxy33519y0y1y2y3y0y53y7y8y939y2x3x4x5\bar{4}\(\newline\)\(x\)\(6\)\(\newline\)\bar{\(5\)}y5x8x9y3\bar{6}$\(\newline\)\(y\)\(1\)\(\newline\)\(\newline\)Linear\(\newline\)Linear\(\newline\)Linear\(\newline\)Quadratic\(\newline\)Quadratic\(\newline\)Quadratic\(\newline\)Exponential\(\newline\)Exponential\(\newline\)Exponential\(\newline\)None of the above\(\newline\)None of the above\(\newline\)None of the above
Analyze Function 1: Analyze Function 1 by checking the differences in y-values as x increases by 1. Calculate the differences: 35−25=10, 25−18=7, 18−14=4, 14−13=1.
Identify Quadratic Pattern: Notice the differences between consecutive y-values are decreasing, suggesting a non-linear pattern. Check second differences: 7−10=−3, 4−7=−3, 1−4=−3.
Analyze Function 2: Since the second differences are constant, Function 1 is quadratic.
No Consistent Pattern: Analyze Function 2 by checking the y-values directly given the x-values. Notice y-values: 9, 7, 9, 15, 25.
Analyze Function 3: Observe that y-values do not follow a consistent pattern of change, either linear or quadratic. Check for exponential pattern by ratios: 97, 79.
Identify Pattern: Ratios are not consistent, indicating Function 2 is neither linear, quadratic, nor exponential.
Identify Pattern: Ratios are not consistent, indicating Function 2 is neither linear, quadratic, nor exponential. Analyze Function 3 by checking the y-values. Notice y-values: −8, −16, −24, −40.
Identify Pattern: Ratios are not consistent, indicating Function 2 is neither linear, quadratic, nor exponential. Analyze Function 3 by checking the y-values. Notice y-values: −8, −16, −24, −40. Calculate the differences: −16−(−8)=−8, −24−(−16)=−8, −40−(−24)=−16.
More problems from Domain and range of quadratic functions: equations