Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the volume of the given solid.
bounded by the planes z=x,y=x,x+y=9 and z=0
◻

Find the volume of the given solid.\newlinebounded by the planes z=x,y=x,x+y=9 z=x, y=x, x+y=9 and z=0 z=0 \newline \square

Full solution

Q. Find the volume of the given solid.\newlinebounded by the planes z=x,y=x,x+y=9 z=x, y=x, x+y=9 and z=0 z=0 \newline \square
  1. Sketch Region and Bounds: Sketch the region and identify the bounds.\newlineThe solid is bounded by the planes z=xz=x, y=xy=x, x+y=9x+y=9, and z=0z=0. The intersection of the planes y=xy=x and x+y=9x+y=9 is a line in the xyxy-plane, which we can find by solving the system of equations.\newliney=xy = x\newlinex+y=9x + y = 9\newlineSubstitute y=xy=x into the second equation:\newliney=xy=x00\newliney=xy=x11\newliney=xy=x22\newliney=xy=x33\newlineSo, the line of intersection is at the point y=xy=x44 in the xyxy-plane.
  2. Set Up Double Integral: Set up the double integral for the volume.\newlineThe volume VV of the solid can be found by integrating over the region in the xyxy-plane. The bounds for yy are from y=xy=x to y=9xy=9-x, and the bounds for xx are from x=0x=0 to x=92x=\frac{9}{2}.\newlineV=(z)dydxV = \int\int(z) \, dy \, dx, where zz ranges from xyxy00 to xx.
  3. Compute Double Integral: Compute the double integral.\newlineV=x=0x=92(y=xy=9x(x)dy)dxV = \int_{x=0}^{x=\frac{9}{2}} \left(\int_{y=x}^{y=9-x} (x) \, dy\right) dx\newlineFirst, integrate with respect to y:\newlineV=x=0x=92(x(9x)xx)dxV = \int_{x=0}^{x=\frac{9}{2}} \left(x*(9-x) - x*x\right) dx\newlineV=x=0x=92(9xx2x2)dxV = \int_{x=0}^{x=\frac{9}{2}} \left(9x - x^2 - x^2\right) dx\newlineV=x=0x=92(9x2x2)dxV = \int_{x=0}^{x=\frac{9}{2}} \left(9x - 2x^2\right) dx
  4. Continue Integration: Continue the integration with respect to xx.
    V=[(92)x2(23)x3]V = \left[ \left(\frac{9}{2}\right)x^2 - \left(\frac{2}{3}\right)x^3 \right] from x=0x=0 to x=92x=\frac{9}{2}
    Now, plug in the upper and lower bounds of xx:
    V=(92)(92)2(23)(92)3((92)02(23)03)V = \left(\frac{9}{2}\right)\left(\frac{9}{2}\right)^2 - \left(\frac{2}{3}\right)\left(\frac{9}{2}\right)^3 - \left( \left(\frac{9}{2}\right)0^2 - \left(\frac{2}{3}\right)0^3 \right)
    V=(92)(814)(23)(7298)V = \left(\frac{9}{2}\right)\left(\frac{81}{4}\right) - \left(\frac{2}{3}\right)\left(\frac{729}{8}\right)
    V=(7298)(23)(7298)V = \left(\frac{729}{8}\right) - \left(\frac{2}{3}\right)\left(\frac{729}{8}\right)
    V=(7298)×(123)V = \left(\frac{729}{8}\right) \times \left(1 - \frac{2}{3}\right)
    V=(7298)×(13)V = \left(\frac{729}{8}\right) \times \left(\frac{1}{3}\right)
    V=[(92)x2(23)x3]V = \left[ \left(\frac{9}{2}\right)x^2 - \left(\frac{2}{3}\right)x^3 \right]00
    V=[(92)x2(23)x3]V = \left[ \left(\frac{9}{2}\right)x^2 - \left(\frac{2}{3}\right)x^3 \right]11

More problems from Find the radius or diameter of a circle