Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the value of 
A that makes the following equation true for all values of 
x.

2^(x)=A^((x)/( 12))
Choose 1 answer:
(A) 
A=((1)/(12))^(2)
(B) 
A=2^((1)/(12))
(C) 
A=2^(12)
(D) 
A=2*12

Find the value of A A that makes the following equation true for all values of x x .\newline2x=Ax12 2^{x}=A^{\frac{x}{12}} \newlineChoose 11 answer:\newline(A) A=(112)2 A=\left(\frac{1}{12}\right)^{2} \newline(B) A=2112 A=2^{\frac{1}{12}} \newline(C) A=212 A=2^{12} \newline(D) A=212 A=2 \cdot 12

Full solution

Q. Find the value of A A that makes the following equation true for all values of x x .\newline2x=Ax12 2^{x}=A^{\frac{x}{12}} \newlineChoose 11 answer:\newline(A) A=(112)2 A=\left(\frac{1}{12}\right)^{2} \newline(B) A=2112 A=2^{\frac{1}{12}} \newline(C) A=212 A=2^{12} \newline(D) A=212 A=2 \cdot 12
  1. Analyze equation: Analyze the given equation.\newlineWe have the equation 2x=A(x12)2^{x} = A^{\left(\frac{x}{12}\right)}. To find the value of AA that makes this equation true for all values of xx, we need to express AA in terms of a base that we can compare to 22.
  2. Isolate base A: Isolate the base AA on one side.\newlineWe can rewrite the equation as A=(2x)(12x)A = (2^{x})^{(\frac{12}{x})}. This simplifies to A=212A = 2^{12}.

More problems from Compare linear and exponential growth