Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the sum of the first 9 terms of the following geometric series.

(1)/(48)-(1)/(12)+(1)/(3)-dots
The sum is ◻.

Find the sum of the first 99 terms of the following geometric series.\newline148112+13 \frac{1}{48}-\frac{1}{12}+\frac{1}{3}-\ldots \newlineThe sum is \square.

Full solution

Q. Find the sum of the first 99 terms of the following geometric series.\newline148112+13 \frac{1}{48}-\frac{1}{12}+\frac{1}{3}-\ldots \newlineThe sum is \square.
  1. Identify terms and ratio: Identify the first term aa and the common ratio rr of the geometric series.\newlineThe first term aa is 148\frac{1}{48}.\newlineTo find the common ratio rr, divide the second term by the first term: r=1/121/48=4r = \frac{-1/12}{1/48} = -4.
  2. Use sum formula: Use the formula for the sum of the first nn terms of a geometric series: Sn=a(1rn)(1r)S_n = \frac{a(1 - r^n)}{(1 - r)}, where nn is the number of terms.\newlineHere, n=9n = 9, a=148a = \frac{1}{48}, and r=4r = -4.
  3. Calculate (4)9(-4)^9: Plug the values into the formula: S_9 = \frac{\(1\)}{\(48\)}\left(\frac{\(1\) - (\(-4\))^\(9\)}{\(1\) - (\(-4\))}\right)\.
  4. Substitute and simplify: Calculate \((-4)^9. Since 44 is even and the exponent 99 is odd, the result will be negative: (4)9=262144(-4)^9 = -262144.
  5. Add numbers in parentheses: Substitute the value into the sum formula: S9=148(1(262144)1+4)S_9 = \frac{1}{48}\left(\frac{1 - (-262144)}{1 + 4}\right).
  6. Substitute sum into formula: Simplify the expression: S9=148(1+262144)/5S_9 = \frac{1}{48}(1 + 262144) / 5.
  7. Multiply numerator: Add the numbers inside the parentheses: 1+262144=2621451 + 262144 = 262145.
  8. Divide by denominator: Substitute the sum into the formula: S9=148(262145)/5S_9 = \frac{1}{48}(262145) / 5.
  9. Final sum: Multiply the numerator: (148)×262145=5461.35416667(\frac{1}{48}) \times 262145 = 5461.35416667 (rounded to 88 decimal places).
  10. Final sum: Multiply the numerator: (148)×262145=5461.35416667(\frac{1}{48}) \times 262145 = 5461.35416667 (rounded to 88 decimal places).Divide by the denominator: 5461.35416667/5=1092.270833335461.35416667 / 5 = 1092.27083333 (rounded to 88 decimal places).
  11. Final sum: Multiply the numerator: (148)×262145=5461.35416667(\frac{1}{48}) \times 262145 = 5461.35416667 (rounded to 88 decimal places).Divide by the denominator: 5461.35416667/5=1092.270833335461.35416667 / 5 = 1092.27083333 (rounded to 88 decimal places).The sum of the first 99 terms of the geometric series is approximately 1092.270833331092.27083333.

More problems from Operations with rational exponents