Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Find the positive solution of the equation.
\newline
6
x
6
7
+
24
=
3188670
6 x^{\frac{6}{7}}+24=3188670
6
x
7
6
+
24
=
3188670
\newline
Answer:
View step-by-step help
Home
Math Problems
Precalculus
Operations with rational exponents
Full solution
Q.
Find the positive solution of the equation.
\newline
6
x
6
7
+
24
=
3188670
6 x^{\frac{6}{7}}+24=3188670
6
x
7
6
+
24
=
3188670
\newline
Answer:
Subtract
24
24
24
:
Subtract
24
24
24
from both sides of the equation to isolate the term with the variable
x
x
x
.
\newline
6
x
(
6
/
7
)
+
24
−
24
=
3188670
−
24
6x^{(6/7)} + 24 - 24 = 3188670 - 24
6
x
(
6/7
)
+
24
−
24
=
3188670
−
24
\newline
6
x
(
6
/
7
)
=
3188646
6x^{(6/7)} = 3188646
6
x
(
6/7
)
=
3188646
Divide by
6
6
6
:
Divide both sides of the equation by
6
6
6
to solve for
x
6
7
x^{\frac{6}{7}}
x
7
6
.
6
x
6
7
6
=
3188646
6
\frac{6x^{\frac{6}{7}}}{6} = \frac{3188646}{6}
6
6
x
7
6
=
6
3188646
x
6
7
=
531441
x^{\frac{6}{7}} = 531441
x
7
6
=
531441
Recognize power of
3
3
3
:
Recognize that
531441
531441
531441
is a power of
3
3
3
. Specifically,
531441
531441
531441
is
3
3
3
raised to the power of
12
12
12
, since
3
12
=
531441
3^{12} = 531441
3
12
=
531441
.
\newline
x
6
7
=
3
12
x^{\frac{6}{7}} = 3^{12}
x
7
6
=
3
12
Raise to reciprocal power:
Raise both sides of the equation to the reciprocal of
6
7
\frac{6}{7}
7
6
to solve for
x
x
x
.
(
x
6
7
)
7
6
=
(
3
12
)
7
6
\left(x^{\frac{6}{7}}\right)^{\frac{7}{6}} = \left(3^{12}\right)^{\frac{7}{6}}
(
x
7
6
)
6
7
=
(
3
12
)
6
7
x
=
3
12
⋅
7
6
x = 3^{12 \cdot \frac{7}{6}}
x
=
3
12
⋅
6
7
x
=
3
14
x = 3^{14}
x
=
3
14
Calculate
x
x
x
value:
Calculate
3
14
3^{14}
3
14
to find the value of
x
x
x
.
\newline
3
14
=
4782969
3^{14} = 4782969
3
14
=
4782969
\newline
x
=
4782969
x = 4782969
x
=
4782969
More problems from Operations with rational exponents
Question
f
(
x
)
=
6
x
+
5
2
−
14
+
5
x
f(x)=\frac{6 x+5}{2-\sqrt{14+5 x}}
f
(
x
)
=
2
−
14
+
5
x
6
x
+
5
\newline
We want to find
lim
x
→
−
2
f
(
x
)
\lim _{x \rightarrow-2} f(x)
lim
x
→
−
2
f
(
x
)
.
\newline
What happens when we use direct substitution?
\newline
Choose
1
1
1
answer:
\newline
(A) The limit exists, and we found it!
\newline
(B) The limit doesn't exist (probably an asymptote).
\newline
(C) The result is indeterminate.
Get tutor help
Posted 1 year ago
Question
Let
x
4
+
y
2
=
17
x^{4}+y^{2}=17
x
4
+
y
2
=
17
.
\newline
What is the value of
d
2
y
d
x
2
\frac{d^{2} y}{d x^{2}}
d
x
2
d
2
y
at the point
(
−
2
,
1
)
(-2,1)
(
−
2
,
1
)
?
\newline
Give an exact number.
Get tutor help
Posted 1 year ago
Question
What is the area of the region bound by the graphs of
f
(
x
)
=
x
−
2
,
g
(
x
)
=
14
−
x
f(x)=\sqrt{x-2}, g(x)=14-x
f
(
x
)
=
x
−
2
,
g
(
x
)
=
14
−
x
, and
x
=
2
x=2
x
=
2
?
\newline
Choose
1
1
1
answer:
\newline
(A)
19
6
\frac{19}{6}
6
19
\newline
(B)
99
2
\frac{99}{2}
2
99
\newline
(C)
151
2
\frac{151}{2}
2
151
\newline
(D)
45
2
\frac{45}{2}
2
45
Get tutor help
Posted 1 year ago
Question
Let
g
(
x
)
=
x
4
3
g(x)=x^{\frac{4}{3}}
g
(
x
)
=
x
3
4
.
\newline
g
′
(
27
)
=
g^{\prime}(27)=
g
′
(
27
)
=
Get tutor help
Posted 1 year ago
Question
Simplify
ln
(
1
e
)
\ln \left(\frac{1}{\sqrt{e}}\right)
ln
(
e
1
)
\newline
Answer:
Get tutor help
Posted 1 year ago
Question
Simplify
ln
(
1
e
)
\ln \left(\frac{1}{e}\right)
ln
(
e
1
)
\newline
Answer:
Get tutor help
Posted 1 year ago
Question
y
=
(
sin
−
1
(
5
x
2
)
)
3
y=(\sin^{-1}(5x^{2}))^{3}
y
=
(
sin
−
1
(
5
x
2
)
)
3
Get tutor help
Posted 1 year ago
Question
(
10
x
3
−
5
x
2
−
6
x
)
÷
(
2
x
2
)
\left(10x^{3}-5x^{2}-6x\right)\div\left(2x^{2}\right)
(
10
x
3
−
5
x
2
−
6
x
)
÷
(
2
x
2
)
Get tutor help
Posted 1 year ago
Question
y
=
cos
4
x
sin
4
x
y=\cos^{4}x\sin^{4}x
y
=
cos
4
x
sin
4
x
Get tutor help
Posted 1 year ago
Question
3
5
−
3
10
\frac{3}{5}-\frac{3}{10}
5
3
−
10
3
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant