Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the exact value of the given expression.


cos(2tan^(-1)((12)/(5)))

4848. Find the exact value of the given expression.\newlinecos(2tan1125) \cos \left(2 \tan ^{-1} \frac{12}{5}\right)

Full solution

Q. 4848. Find the exact value of the given expression.\newlinecos(2tan1125) \cos \left(2 \tan ^{-1} \frac{12}{5}\right)
  1. Find θ\theta: We need to find the exact value of the expression cos(2tan1(125))\cos(2\tan^{-1}(\frac{12}{5})). To do this, we will use the double angle formula for cosine, which is cos(2θ)=cos2(θ)sin2(θ)\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta). However, we first need to find cos(θ)\cos(\theta) and sin(θ)\sin(\theta) where θ=tan1(125)\theta = \tan^{-1}(\frac{12}{5}).
  2. Calculate Hypotenuse: Let's denote θ=tan1(125)\theta = \tan^{-1}(\frac{12}{5}). Since tan(θ)=oppositeadjacent\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}}, we can consider a right triangle where the opposite side is 1212 and the adjacent side is 55. To find the hypotenuse, we use the Pythagorean theorem: hypotenuse2=opposite2+adjacent2\text{hypotenuse}^2 = \text{opposite}^2 + \text{adjacent}^2.
  3. Find cos(θ)\cos(\theta) and sin(θ)\sin(\theta): Calculate the hypotenuse using the Pythagorean theorem: hypotenuse2=122+52=144+25=169\text{hypotenuse}^2 = 12^2 + 5^2 = 144 + 25 = 169. Therefore, the hypotenuse is 169=13\sqrt{169} = 13.
  4. Apply Double Angle Formula: Now we can find cos(θ)\cos(\theta) and sin(θ)\sin(\theta). Since cos(θ)=adjacenthypotenuse\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} and sin(θ)=oppositehypotenuse\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}}, we have cos(θ)=513\cos(\theta) = \frac{5}{13} and sin(θ)=1213\sin(\theta) = \frac{12}{13}.
  5. Calculate cos(2θ)\cos(2\theta): Using the double angle formula for cosine, cos(2θ)=cos2(θ)sin2(θ)\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta), we substitute cos(θ)\cos(\theta) and sin(θ)\sin(\theta) into the formula: cos(2θ)=(513)2(1213)2\cos(2\theta) = (\frac{5}{13})^2 - (\frac{12}{13})^2.
  6. Combine Fractions: Calculate cos(2θ)\cos(2\theta) by squaring the values: cos(2θ)=25169144169\cos(2\theta) = \frac{25}{169} - \frac{144}{169}.
  7. Final Result: Combine the fractions to find cos(2θ)\cos(2\theta): cos(2θ)=25144169=119169\cos(2\theta) = \frac{25 - 144}{169} = \frac{-119}{169}.
  8. Final Result: Combine the fractions to find cos(2θ)\cos(2\theta): cos(2θ)=25144169=119169\cos(2\theta) = \frac{25 - 144}{169} = -\frac{119}{169}.The exact value of cos(2tan1(125))\cos(2\tan^{-1}(\frac{12}{5})) is therefore 119169-\frac{119}{169}.

More problems from Evaluate rational exponents