Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr2)(x^(4)-4x^(3)+4x^(2))/(x-2).
Choose 1 answer:
(A) -4
(B) 0
(c) 4
(D) The limit doesn't exist

Find limx2x44x3+4x2x2 \lim _{x \rightarrow 2} \frac{x^{4}-4 x^{3}+4 x^{2}}{x-2} .\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 00\newline(C) 44\newline(D) The limit doesn't exist

Full solution

Q. Find limx2x44x3+4x2x2 \lim _{x \rightarrow 2} \frac{x^{4}-4 x^{3}+4 x^{2}}{x-2} .\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 00\newline(C) 44\newline(D) The limit doesn't exist
  1. Identify the form: Identify the form of the limit.\newlineWe need to find the limit of the function as xx approaches 22. Let's first substitute x=2x = 2 into the function to see if we can directly evaluate the limit.\newlinelimx2x44x3+4x2x2=24423+42222\lim_{x \to 2}\frac{x^4 - 4x^3 + 4x^2}{x - 2} = \frac{2^4 - 4\cdot2^3 + 4\cdot2^2}{2 - 2}\newline=1632+160= \frac{16 - 32 + 16}{0}\newline=00= \frac{0}{0}\newlineThis is an indeterminate form, so we cannot directly evaluate the limit.
  2. Factor the numerator: Factor the numerator.\newlineSince we have an indeterminate form, we should try to simplify the expression. The numerator is a polynomial that can be factored, especially since we see a common pattern (x22x)2(x^2 - 2x)^2.\newlineLet's factor the numerator:\newlinex44x3+4x2=(x2)222xx2+(2x)2x^4 - 4x^3 + 4x^2 = (x^2)^2 - 2\cdot2\cdot x\cdot x^2 + (2x)^2\newline=(x22x)2= (x^2 - 2x)^2\newlineNow we have:\newlinelimx2(x22x)2(x2)\lim_{x \to 2}\frac{(x^2 - 2x)^2}{(x - 2)}
  3. Factor out a common term: Factor out a common term.\newlineWe notice that the numerator is a perfect square and can be written as (x2)2(x+2)2(x - 2)^2 * (x + 2)^2. Since we have an (x2)(x - 2) term in the denominator, we can cancel out one (x2)(x - 2) term from the numerator and the denominator.\newlinelimx2(x2)2(x+2)2/(x2)\lim_{x \to 2}(x - 2)^2 * (x + 2)^2 / (x - 2)\newline= limx2(x2)(x+2)2\lim_{x \to 2}(x - 2)(x + 2)^2
  4. Evaluate the limit: Evaluate the limit.\newlineNow that we have canceled the common term, we can directly substitute x=2x = 2 into the remaining expression to find the limit.\newlinelimx2(x2)(x+2)2=(22)(2+2)2\lim_{x \to 2}(x - 2)(x + 2)^2 = (2 - 2)(2 + 2)^2\newline=0×42= 0 \times 4^2\newline=0= 0

More problems from Compare linear and exponential growth