Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr-5)h(x) for

h(x)=(5x+4)/(x+8)". "

Find limx5h(x) \lim _{x \rightarrow-5} h(x) for\newlineh(x)=5x+4x+8 h(x)=\frac{5 x+4}{x+8} \text {. }

Full solution

Q. Find limx5h(x) \lim _{x \rightarrow-5} h(x) for\newlineh(x)=5x+4x+8 h(x)=\frac{5 x+4}{x+8} \text {. }
  1. Identify the function: Identify the function whose limit we need to find.\newlineWe are given the function h(x)=5x+4x+8h(x) = \frac{5x + 4}{x + 8}.\newlineWe need to find the limit of h(x)h(x) as xx approaches 5-5.
  2. Substitute xx into function: Substitute the value of xx into the function to see if the function is defined at that point.\newlineLet's substitute x=5x = -5 into h(x)h(x) to check if the function is defined at x=5x = -5.\newlineh(5)=5(5)+4(5)+8=25+43=213=7.h(-5) = \frac{5(-5) + 4}{(-5) + 8} = \frac{-25 + 4}{3} = \frac{-21}{3} = -7.\newlineThe function is defined at x=5x = -5, so we can directly substitute the value.
  3. Calculate the limit: Calculate the limit by substitution since the function is continuous at x=5x = -5.limx5h(x)=h(5)=7\lim_{x \to -5} h(x) = h(-5) = -7.

More problems from Compare linear and exponential growth