Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Find
lim
h
→
0
6
arctan
(
1
+
h
)
−
6
arctan
(
1
)
h
\lim _{h \rightarrow 0} \frac{6 \arctan (1+h)-6 \arctan (1)}{h}
lim
h
→
0
h
6
a
r
c
t
a
n
(
1
+
h
)
−
6
a
r
c
t
a
n
(
1
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
3
3
3
\newline
(C)
6
6
6
\newline
(D) The limit doesn't exist
View step-by-step help
Home
Math Problems
Algebra 2
Solve quadratic inequalities
Full solution
Q.
Find
lim
h
→
0
6
arctan
(
1
+
h
)
−
6
arctan
(
1
)
h
\lim _{h \rightarrow 0} \frac{6 \arctan (1+h)-6 \arctan (1)}{h}
lim
h
→
0
h
6
a
r
c
t
a
n
(
1
+
h
)
−
6
a
r
c
t
a
n
(
1
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
3
3
3
\newline
(C)
6
6
6
\newline
(D) The limit doesn't exist
Identify Limit:
Identify the limit to solve.
lim
h
→
0
6
arctan
(
1
+
h
)
−
6
arctan
(
1
)
h
\lim_{h \rightarrow 0}\frac{6\arctan(1+h)-6\arctan(1)}{h}
lim
h
→
0
h
6
a
r
c
t
a
n
(
1
+
h
)
−
6
a
r
c
t
a
n
(
1
)
Simplify with
arctan
(
1
)
\arctan(1)
arctan
(
1
)
:
Use the fact that
arctan
(
1
)
=
π
4
\arctan(1) = \frac{\pi}{4}
arctan
(
1
)
=
4
π
to simplify the expression.
lim
h
→
0
6
arctan
(
1
+
h
)
−
6
(
π
4
)
h
\lim_{h \rightarrow 0}\frac{6\arctan(1+h)-6\left(\frac{\pi}{4}\right)}{h}
lim
h
→
0
h
6
a
r
c
t
a
n
(
1
+
h
)
−
6
(
4
π
)
Apply Limit to Terms:
Apply the limit to the
arctan
(
1
+
h
)
\arctan(1+h)
arctan
(
1
+
h
)
term.
lim
h
→
0
6
arctan
(
1
+
h
)
h
−
lim
h
→
0
6
(
π
/
4
)
h
\lim_{h \to 0}\frac{6\arctan(1+h)}{h} - \lim_{h \to 0}\frac{6(\pi/4)}{h}
lim
h
→
0
h
6
a
r
c
t
a
n
(
1
+
h
)
−
lim
h
→
0
h
6
(
π
/4
)
Simplify Constant Term:
Simplify the second term, as
6
(
π
/
4
)
6(\pi/4)
6
(
π
/4
)
is a constant and its limit as
h
h
h
approaches
0
0
0
is
0
0
0
.
\newline
lim
h
→
0
6
arctan
(
1
+
h
)
h
−
0
\lim_{h \to 0}\frac{6\arctan(1+h)}{h} - 0
h
→
0
lim
h
6
arctan
(
1
+
h
)
−
0
Apply L'Hôpital's Rule:
Apply L'Hôpital's Rule to the first term since it's in the indeterminate form
0
/
0
0/0
0/0
.
\newline
lim
h
→
0
(
6
d
d
h
(
arctan
(
1
+
h
)
)
)
\lim_{h \to 0}(6\frac{d}{dh}(\arctan(1+h)))
lim
h
→
0
(
6
d
h
d
(
arctan
(
1
+
h
)))
Differentiate
arctan
(
1
+
h
)
\text{arctan}(1+h)
arctan
(
1
+
h
)
:
Differentiate
arctan
(
1
+
h
)
\text{arctan}(1+h)
arctan
(
1
+
h
)
with respect to
h
h
h
.
d
d
h
(
arctan
(
1
+
h
)
)
=
1
1
+
(
1
+
h
)
2
\frac{d}{dh}(\text{arctan}(1+h)) = \frac{1}{1+(1+h)^2}
d
h
d
(
arctan
(
1
+
h
))
=
1
+
(
1
+
h
)
2
1
Substitute Derivative:
Substitute the derivative back into the limit.
lim
h
→
0
(
6
1
+
(
1
+
h
)
2
)
\lim_{h \to 0}\left(\frac{6}{1+(1+h)^2}\right)
lim
h
→
0
(
1
+
(
1
+
h
)
2
6
)
Evaluate Limit:
Evaluate the limit by plugging in
h
=
0
h = 0
h
=
0
.
6
1
+
(
1
+
0
)
2
=
6
1
+
1
2
=
6
2
=
3
\frac{6}{1+(1+0)^2} = \frac{6}{1+1^2} = \frac{6}{2} = 3
1
+
(
1
+
0
)
2
6
=
1
+
1
2
6
=
2
6
=
3
More problems from Solve quadratic inequalities
Question
−
10
x
−
3
≥
8
x
+
4
-10 x-3 \geq 8 x+4
−
10
x
−
3
≥
8
x
+
4
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
A)
x
≤
−
7
18
x \leq-\frac{7}{18}
x
≤
−
18
7
\newline
(B)
x
≤
−
7
2
x \leq-\frac{7}{2}
x
≤
−
2
7
\newline
(C)
x
≤
−
1
18
x \leq-\frac{1}{18}
x
≤
−
18
1
\newline
(D)
x
≥
−
7
18
x \geq-\frac{7}{18}
x
≥
−
18
7
Get tutor help
Posted 10 months ago
Question
−
12
x
<
−
72
-12 x<-72
−
12
x
<
−
72
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
6
x<6
x
<
6
\newline
(B)
x
>
6
x>6
x
>
6
\newline
(C)
x
<
1
6
x<\frac{1}{6}
x
<
6
1
\newline
(D)
x
>
1
6
x>\frac{1}{6}
x
>
6
1
Get tutor help
Posted 10 months ago
Question
8
x
+
6
<
4
x
+
10
8 x+6<4 x+10
8
x
+
6
<
4
x
+
10
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
1
3
x<\frac{1}{3}
x
<
3
1
\newline
(B)
x
<
4
x<4
x
<
4
\newline
(C)
x
<
1
x<1
x
<
1
\newline
(D)
x
>
1
x>1
x
>
1
Get tutor help
Posted 10 months ago
Question
6
x
−
2
<
2
x
+
3
6 x-2<2 x+3
6
x
−
2
<
2
x
+
3
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
5
4
x<\frac{5}{4}
x
<
4
5
\newline
(B)
x
>
5
4
x>\frac{5}{4}
x
>
4
5
\newline
(C)
x
<
1
4
x<\frac{1}{4}
x
<
4
1
\newline
(D)
x
<
5
8
x<\frac{5}{8}
x
<
8
5
Get tutor help
Posted 10 months ago
Question
16
<
−
4
x
16<-4 x
16
<
−
4
x
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
−
4
x<-4
x
<
−
4
\newline
(B)
x
>
−
4
x>-4
x
>
−
4
\newline
(C)
x
<
−
1
4
x<-\frac{1}{4}
x
<
−
4
1
\newline
(D)
x
>
−
1
4
x>-\frac{1}{4}
x
>
−
4
1
Get tutor help
Posted 10 months ago
Question
Find
lim
x
→
4
2
−
4
x
−
12
x
−
4
\lim _{x \rightarrow 4} \frac{2-\sqrt{4 x-12}}{x-4}
lim
x
→
4
x
−
4
2
−
4
x
−
12
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
\newline
(B)
1
1
1
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
2
x
4
−
4
x
3
+
4
x
2
x
−
2
\lim _{x \rightarrow 2} \frac{x^{4}-4 x^{3}+4 x^{2}}{x-2}
lim
x
→
2
x
−
2
x
4
−
4
x
3
+
4
x
2
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
0
0
0
\newline
(C)
4
4
4
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Let
f
f
f
be a continuous function on the closed interval
[
−
5
,
0
]
[-5,0]
[
−
5
,
0
]
, where
f
(
−
5
)
=
0
f(-5)=0
f
(
−
5
)
=
0
and
f
(
0
)
=
5
f(0)=5
f
(
0
)
=
5
.
\newline
Which of the following is guaranteed by the Intermediate Value Theorem?
\newline
Choose
1
1
1
answer:
\newline
(A)
f
(
c
)
=
−
2
f(c)=-2
f
(
c
)
=
−
2
for at least one
c
c
c
between
0
0
0
and
5
5
5
\newline
(B)
f
(
c
)
=
2
f(c)=2
f
(
c
)
=
2
for at least one
c
c
c
between
0
0
0
and
5
5
5
\newline
(C)
f
(
c
)
=
−
2
f(c)=-2
f
(
c
)
=
−
2
for at least one
c
c
c
between
−
5
-5
−
5
and
0
0
0
\newline
(D)
f
(
c
)
=
2
f(c)=2
f
(
c
)
=
2
for at least one
c
c
c
between
−
5
-5
−
5
and
0
0
0
Get tutor help
Posted 9 months ago
Question
Let
g
(
x
)
=
tan
(
x
)
g(x)=\tan (x)
g
(
x
)
=
tan
(
x
)
.
\newline
Can we use the intermediate value theorem to say the equation
g
(
x
)
=
0
g(x)=0
g
(
x
)
=
0
has a solution where
π
4
≤
x
≤
3
π
4
\frac{\pi}{4} \leq x \leq \frac{3 \pi}{4}
4
π
≤
x
≤
4
3
π
?
\newline
Choose
1
1
1
answer:
\newline
(A) No, since the function is not continuous on that interval.
\newline
(B) No, since
0
0
0
is not between
g
(
π
4
)
g\left(\frac{\pi}{4}\right)
g
(
4
π
)
and
g
(
3
π
4
)
g\left(\frac{3 \pi}{4}\right)
g
(
4
3
π
)
.
\newline
(C) Yes, both conditions for using the intermediate value theorem have been met.
Get tutor help
Posted 9 months ago
Question
Let
g
(
x
)
=
cos
(
x
)
g(x)=\cos (x)
g
(
x
)
=
cos
(
x
)
.
\newline
Can we use the intermediate value theorem to say the equation
g
(
x
)
=
0.8
g(x)=0.8
g
(
x
)
=
0.8
has a solution where
0
≤
x
≤
π
2
0 \leq x \leq \frac{\pi}{2}
0
≤
x
≤
2
π
?
\newline
Choose
1
1
1
answer:
\newline
(A) No, since the function is not continuous on that interval.
\newline
(B) No, since
0
0
0
.
8
8
8
is not between
g
(
0
)
g(0)
g
(
0
)
and
g
(
π
2
)
g\left(\frac{\pi}{2}\right)
g
(
2
π
)
.
\newline
(C) Yes, both conditions for using the intermediate value theorem have been met.
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant