Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(h rarr0)(4sin((pi)/(2)+h)-4sin((pi)/(2)))/(h).
Choose 1 answer:
(A) 0
(B) 1
(C) 4
D The limit doesn't exist

Find limh04sin(π2+h)4sin(π2)h \lim _{h \rightarrow 0} \frac{4 \sin \left(\frac{\pi}{2}+h\right)-4 \sin \left(\frac{\pi}{2}\right)}{h} .\newlineChoose 11 answer:\newline(A) 00\newline(B) 11\newline(C) 44\newline(D) The limit doesn't exist

Full solution

Q. Find limh04sin(π2+h)4sin(π2)h \lim _{h \rightarrow 0} \frac{4 \sin \left(\frac{\pi}{2}+h\right)-4 \sin \left(\frac{\pi}{2}\right)}{h} .\newlineChoose 11 answer:\newline(A) 00\newline(B) 11\newline(C) 44\newline(D) The limit doesn't exist
  1. Identify Limit: Identify the limit to solve: limh04sin(π2+h)4sin(π2)h\lim_{h \to 0}\frac{4\sin\left(\frac{\pi}{2}+h\right)-4\sin\left(\frac{\pi}{2}\right)}{h}.
  2. Recognize Sin Value: Recognize that sin(π2)=1\sin\left(\frac{\pi}{2}\right) = 1, so 4sin(π2)=44\sin\left(\frac{\pi}{2}\right) = 4.
  3. Substitute Sin Value: Substitute sin(π2)\sin\left(\frac{\pi}{2}\right) with 11 in the expression: limh0(4sin(π2+h)4h)\lim_{h \to 0}\left(\frac{4\sin\left(\frac{\pi}{2}+h\right)-4}{h}\right).
  4. Apply Limit to Sine: Apply the limit to the sine function directly: limh04(sin(π2+h)1)h.\lim_{h \to 0}\frac{4(\sin(\frac{\pi}{2}+h)-1)}{h}.
  5. Use Approximation: Use the fact that sin(π2+h)\sin\left(\frac{\pi}{2}+h\right) is approximately 11 when hh is close to 00: limh04(11)/h\lim_{h \rightarrow 0}4\left(1-1\right)/h.

More problems from Solve quadratic inequalities