Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fernando factored 45y645y^{6} as (9y3)(5y3)(9y^{3})(5y^{3}). \newlineSalma factored 45y645y^{6} as (3y)(15y5)(3y)(15y^{5}). \newlineWhich of them factored 45y645y^{6} correctly? \newlineChoose 11 answer:\newline(A) Only Fernando\newline(B) Only Salma\newline(C) Both Fernando and Salma\newline(D) Neither Fernando nor Salma

Full solution

Q. Fernando factored 45y645y^{6} as (9y3)(5y3)(9y^{3})(5y^{3}). \newlineSalma factored 45y645y^{6} as (3y)(15y5)(3y)(15y^{5}). \newlineWhich of them factored 45y645y^{6} correctly? \newlineChoose 11 answer:\newline(A) Only Fernando\newline(B) Only Salma\newline(C) Both Fernando and Salma\newline(D) Neither Fernando nor Salma
  1. Fernando's factorization: Fernando's factorization: Check if (9y3)(5y3)(9y^{3})(5y^{3}) equals 45y645y^{6}.\newlineDo the multiplication: 9×5=459 \times 5 = 45 and y3×y3=y6y^{3} \times y^{3} = y^{6}.\newlineSo, (9y3)(5y3)=45y6(9y^{3})(5y^{3}) = 45y^{6}.
  2. Salma's factorization: Salma's factorization: Check if (3y)(15y5)=45y6(3y)(15y^{5}) = 45y^{6}.\newlineDo the multiplication: 3×15=453 \times 15 = 45 and y×y5=y6y \times y^{5} = y^{6}.\newlineSo, (3y)(15y5)=45y6(3y)(15y^{5}) = 45y^{6}.
  3. Compare factorizations: Compare both factorizations to the original expression 45y645y^{6}.\newlineBoth Fernando's and Salma's factorizations result in 45y645y^{6}.

More problems from Operations with rational exponents