Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely.

-28x^(4)y^(3)z^(3)-21x^(6)y^(6)z^(4)
Answer:

Factor completely.\newline28x4y3z321x6y6z4 -28 x^{4} y^{3} z^{3}-21 x^{6} y^{6} z^{4} \newlineAnswer:

Full solution

Q. Factor completely.\newline28x4y3z321x6y6z4 -28 x^{4} y^{3} z^{3}-21 x^{6} y^{6} z^{4} \newlineAnswer:
  1. Identify GCF: Identify the greatest common factor (GCF) of the two terms.\newlineThe GCF of 28-28 and 21-21 is 7-7.\newlineThe GCF of x4x^{4} and x6x^{6} is x4x^{4}.\newlineThe GCF of y3y^{3} and y6y^{6} is y3y^{3}.\newlineThe GCF of z3z^{3} and 21-2100 is z3z^{3}.\newlineSo, the GCF of the entire expression is 21-2122.
  2. Factor out GCF: Factor out the GCF from each term in the expression.\newlineDivide each term by 7x4y3z3-7x^{4}y^{3}z^{3} to see what remains.\newline28x4y3z3÷7x4y3z3=4-28x^{4}y^{3}z^{3} \div -7x^{4}y^{3}z^{3} = 4\newline21x6y6z4÷7x4y3z3=3x2y3z-21x^{6}y^{6}z^{4} \div -7x^{4}y^{3}z^{3} = 3x^{2}y^{3}z
  3. Write factored expression: Write the factored expression using the GCF and the remaining terms.\newlineThe factored expression is 7x4y3z3(4+3x2y3z)-7x^{4}y^{3}z^{3}(4 + 3x^{2}y^{3}z).

More problems from Operations with rational exponents