Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely.

11x^(3)y^(2)z^(2)-22x^(2)z^(5)
Answer:

Factor completely.\newline11x3y2z222x2z5 11 x^{3} y^{2} z^{2}-22 x^{2} z^{5} \newlineAnswer:

Full solution

Q. Factor completely.\newline11x3y2z222x2z5 11 x^{3} y^{2} z^{2}-22 x^{2} z^{5} \newlineAnswer:
  1. Identify GCF: Identify the greatest common factor (GCF) of the two terms in the expression.\newlineThe GCF of 11x3y2z211x^{3}y^{2}z^{2} and 22x2z522x^{2}z^{5} is 11x2z211x^{2}z^{2}.
  2. Factor out GCF: Factor out the GCF from each term in the expression. \newline11x3y2z222x2z5=11x2z2(x32y2z22)11x2z2(2211x22z52)11x^{3}y^{2}z^{2} - 22x^{2}z^{5} = 11x^{2}z^{2}(x^{3-2}y^{2}z^{2-2}) - 11x^{2}z^{2}(\frac{22}{11}x^{2-2}z^{5-2})
  3. Simplify terms: Simplify the exponents and coefficients in each term after factoring out the GCF. \newline11x2z2(x32y2z22)11x2z2(2211x22z52)=11x2z2(xy2)11x2z2(2z3)11x^{2}z^{2}(x^{3-2}y^{2}z^{2-2}) - 11x^{2}z^{2}(\frac{22}{11}x^{2-2}z^{5-2}) = 11x^{2}z^{2}(xy^{2}) - 11x^{2}z^{2}(2z^{3})
  4. Combine final expression: Combine the terms inside the parentheses to write the final factored expression. 11x2z2(xy22z3)11x^{2}z^{2}(xy^{2} - 2z^{3})

More problems from Operations with rational exponents