Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)=x-5

g(x)=(x^(2)-12)/(x^(2)+4)
Write 
g(f(x)) as an expression in terms of 
x.

g(f(x))=

f(x)=x5 f(x)=x-5 \newlineg(x)=x212x2+4 g(x)=\frac{x^{2}-12}{x^{2}+4} \newlineWrite g(f(x)) g(f(x)) as an expression in terms of x x .\newlineg(f(x))= g(f(x))=

Full solution

Q. f(x)=x5 f(x)=x-5 \newlineg(x)=x212x2+4 g(x)=\frac{x^{2}-12}{x^{2}+4} \newlineWrite g(f(x)) g(f(x)) as an expression in terms of x x .\newlineg(f(x))= g(f(x))=
  1. Substitute and Find g(f(x))g(f(x)): First, we need to substitute the expression for f(x)f(x) into g(x)g(x) to find g(f(x))g(f(x)).\newlinef(x)=x5f(x) = x - 5\newlineg(x)=x212x2+4g(x) = \frac{x^2 - 12}{x^2 + 4}\newlineNow, let's substitute xx in g(x)g(x) with f(x)f(x):\newlineg(f(x))=g(x5)g(f(x)) = g(x - 5)
  2. Replace xx with f(x)f(x): Now we will replace xx in g(x)g(x) with (x5)(x - 5):g(f(x))=(x5)212(x5)2+4g(f(x)) = \frac{(x - 5)^2 - 12}{(x - 5)^2 + 4}
  3. Expand Numerator and Denominator: Next, we expand the numerator and the denominator: g(f(x))=(x210x+25)12(x210x+25)+4g(f(x)) = \frac{(x^2 - 10x + 25) - 12}{(x^2 - 10x + 25) + 4}
  4. Simplify the Expression: Simplify the expression by combining like terms: g(f(x))=x210x+13x210x+29g(f(x)) = \frac{x^2 - 10x + 13}{x^2 - 10x + 29}

More problems from Compare linear and exponential growth