Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)=(x-4)^(2)-16
At what values of 
x does the graph of the function intersect the 
x-axis?
Choose 1 answer:
(A) 
x=8,x=0
(B) 
x=-8,x=0
(c) 
x=8,x=-8
(D) 
f(x) does not intersect the 
x-axis.

f(x)=(x4)216 f(x)=(x-4)^{2}-16 \newlineAt what values of x x does the graph of the function intersect the x x -axis?\newlineChoose 11 answer:\newline(A) x=8,x=0 x=8, x=0 \newline(B) x=8,x=0 x=-8, x=0 \newline(C) x=8,x=8 x=8, x=-8 \newline(D) f(x) f(x) does not intersect the x x -axis.

Full solution

Q. f(x)=(x4)216 f(x)=(x-4)^{2}-16 \newlineAt what values of x x does the graph of the function intersect the x x -axis?\newlineChoose 11 answer:\newline(A) x=8,x=0 x=8, x=0 \newline(B) x=8,x=0 x=-8, x=0 \newline(C) x=8,x=8 x=8, x=-8 \newline(D) f(x) f(x) does not intersect the x x -axis.
  1. Problem Understanding: Understand the problem.\newlineWe need to find the values of xx where the function f(x)f(x) intersects the xx-axis. The xx-axis is where the value of the function f(x)f(x) is zero.
  2. Setting the Equation: Set the function equal to zero to find the x-intercepts.\newline0=(x4)2160 = (x-4)^{2} - 16
  3. Solving the Equation: Solve the equation for xx.\newlineAdd 1616 to both sides of the equation to isolate the squared term.\newline(x4)2=16(x-4)^{2} = 16
  4. Taking the Square Root: Take the square root of both sides.\newline(x4)2=±16\sqrt{(x-4)^{2}} = \pm\sqrt{16}\newlinex4=±4x - 4 = \pm4
  5. Final Solution: Solve for xx.x=4+4 or x=44x = 4 + 4 \text{ or } x = 4 - 4x=8 or x=0x = 8 \text{ or } x = 0

More problems from Compare linear and exponential growth