Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)=(x+2)^(2)-64
At what values of 
x does the graph of the function intersect the 
x-axis?
Choose 1 answer:
(A) 
x=6,x=-10
(B) 
x=6,x=10
(c) 
x=-6,x=-10
(D) 
f(x) does not intersect the 
x-axis.

f(x)=(x+2)264 f(x)=(x+2)^{2}-64 \newlineAt what values of x x does the graph of the function intersect the x x -axis?\newlineChoose 11 answer:\newline(A) x=6,x=10 x=6, x=-10 \newline(B) x=6,x=10 x=6, x=10 \newline(C) x=6,x=10 x=-6, x=-10 \newline(D) f(x) f(x) does not intersect the x x -axis.

Full solution

Q. f(x)=(x+2)264 f(x)=(x+2)^{2}-64 \newlineAt what values of x x does the graph of the function intersect the x x -axis?\newlineChoose 11 answer:\newline(A) x=6,x=10 x=6, x=-10 \newline(B) x=6,x=10 x=6, x=10 \newline(C) x=6,x=10 x=-6, x=-10 \newline(D) f(x) f(x) does not intersect the x x -axis.
  1. Problem Understanding: Understand the problem.\newlineWe need to find the values of xx for which f(x)=0f(x) = 0, because the graph of the function intersects the xx-axis where the function value is zero.
  2. Equation Setup: Set the function equal to zero and solve for x.\newlinef(x) = (x+22)^22 - 6464 = 00
  3. Quadratic Equation Solution: Solve the quadratic equation.\newline(x+2)2=64(x+2)^2 = 64\newlineTake the square root of both sides.\newlinex+2=±64x+2 = \pm\sqrt{64}\newlinex+2=±8x+2 = \pm8
  4. Solving for x: Solve for x.\newlinex=2+8x = -2 + 8 or x=28x = -2 - 8\newlinex=6x = 6 or x=10x = -10
  5. Solution Verification: Check the solutions.\newlinePlug x=6x = 6 and x=10x = -10 back into the function to ensure they result in f(x)=0f(x) = 0.\newlinef(6)=(6+2)264=6464=0f(6) = (6+2)^2 - 64 = 64 - 64 = 0\newlinef(10)=(10+2)264=14464=80f(-10) = (-10+2)^2 - 64 = 144 - 64 = 80\newlineThere is a math error in the calculation for f(10)f(-10). The correct calculation should be:\newlinef(10)=(10+2)264=(8)264=6464=0f(-10) = (-10+2)^2 - 64 = (-8)^2 - 64 = 64 - 64 = 0

More problems from Compare linear and exponential growth