Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)={[-(x+2)^(2)+5," for ",x!=-1],[3," for ",x=-1]:}
Find 
f(-1)
Answer:

f(x)={(x+2)2+5amp; for amp;x13amp; for amp;x=1 f(x)=\left\{\begin{array}{lll} -(x+2)^{2}+5 & \text { for } & x \neq-1 \\ 3 & \text { for } & x=-1 \end{array}\right. \newlineFind f(1) f(-1) \newlineAnswer:\newline

Full solution

Q. f(x)={(x+2)2+5 for x13 for x=1 f(x)=\left\{\begin{array}{lll} -(x+2)^{2}+5 & \text { for } & x \neq-1 \\ 3 & \text { for } & x=-1 \end{array}\right. \newlineFind f(1) f(-1) \newlineAnswer:\newline
  1. Define Function: The function f(x)f(x) is defined piecewise, meaning it has different expressions for different values of xx. We need to determine which expression to use for x=1x = -1.
  2. Given Value for x=1x = -1: According to the definition of f(x)f(x), there is a specific value given for f(x)f(x) when x=1x = -1. The function explicitly states that f(1)=3f(-1) = 3.
  3. Conclusion: Since the function provides a direct value for f(1)f(-1), we do not need to perform any calculations or use the other expression for f(x)f(x). We can simply state that f(1)=3f(-1) = 3.

More problems from Simplify radical expressions with variables