Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)=2x^(3)+8

h(x)=root(3)(12-5x)
Write 
(f@h)(x) as an expression in terms of 
x.

(f@h)(x)=

f(x)=2x3+8 f(x)=2 x^{3}+8 \newlineh(x)=125x3 h(x)=\sqrt[3]{12-5 x} \newlineWrite (fh)(x) (f \circ h)(x) as an expression in terms of x x .\newline(fh)(x)= (f \circ h)(x)=

Full solution

Q. f(x)=2x3+8 f(x)=2 x^{3}+8 \newlineh(x)=125x3 h(x)=\sqrt[3]{12-5 x} \newlineWrite (fh)(x) (f \circ h)(x) as an expression in terms of x x .\newline(fh)(x)= (f \circ h)(x)=
  1. Substitute h(x)h(x) into f(x)f(x): To find the composition of the functions (fh)(x)(f \circ h)(x), we need to substitute the function h(x)h(x) into the function f(x)f(x). This means we will replace every instance of xx in f(x)f(x) with h(x)h(x).
  2. Write down h(x)h(x): First, let's write down the function h(x)h(x): h(x)=125x3h(x) = \sqrt[3]{12-5x}. This is the cube root of (125x)(12-5x).
  3. Write down f(x)f(x): Now, let's write down the function f(x)f(x): f(x)=2x3+8f(x) = 2x^{3} + 8.
  4. Cube root of (125x)(12-5x): Substitute h(x)h(x) into f(x)f(x) to get (f@h)(x)(f@h)(x): (f@h)(x)=f(h(x))=2(h(x))3+8(f@h)(x) = f(h(x)) = 2(h(x))^{3} + 8.
  5. Replace cubed h(x)h(x): Now we need to cube the expression for h(x)h(x): (125x3)3\left(\sqrt[3]{12-5x}\right)^{3}. When we cube a cube root, they cancel each other out, so we are left with the expression inside the cube root, which is 125x12-5x.
  6. Simplify the expression: Replace the cubed h(x)h(x) in the expression for (f@h)(x)(f@h)(x): (f@h)(x)=2(125x)+8(f@h)(x) = 2(12-5x) + 8.
  7. Multiply through the expression: Now we simplify the expression: (f@h)(x)=2×122×5x+8(f@h)(x) = 2 \times 12 - 2 \times 5x + 8.
  8. Combine like terms: Multiply through the expression: (f@h)(x)=2410x+8(f@h)(x) = 24 - 10x + 8.
  9. Final expression: Combine like terms to get the final expression for (f@h)(x)(f@h)(x): (f@h)(x)=3210x(f@h)(x) = 32 - 10x.

More problems from Compare linear and exponential growth