Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)={[(1)/(x+1)," for "-5 < x],[2^(x)," for "x > -4]:}
Find 
lim_(x rarr-4^(+))f(x).
Choose 1 answer:
(A) -4
(B) 
-(1)/(3)
(c) 
(1)/(16)
(D) The limit doesn't exist.

f(x)={1x+1amp; for 5<x=""2x=""=""=""=""for=""=""x="">4 f(x)=\left\{\begin{array}{ll}\frac{1}{x+1} &amp; \text { for }-5<x \\="" 2^{x}="" &="" \text="" {="" for="" }="" x="">-4\end{array}\right. \newlineFind limx4+f(x) \lim _{x \rightarrow-4^{+}} f(x) .\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 13 -\frac{1}{3} \newline(C) 116 \frac{1}{16} \newline(D) The limit doesn't exist.

Full solution

Q. f(x)={1x+1 for 5<x2x for x>4 f(x)=\left\{\begin{array}{ll}\frac{1}{x+1} & \text { for }-5<x \\ 2^{x} & \text { for } x>-4\end{array}\right. \newlineFind limx4+f(x) \lim _{x \rightarrow-4^{+}} f(x) .\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 13 -\frac{1}{3} \newline(C) 116 \frac{1}{16} \newline(D) The limit doesn't exist.
  1. Given function definition: We are given a piecewise function f(x)f(x) and asked to find the limit as xx approaches 4-4 from the right (x4+x \rightarrow -4^+). The function is defined as follows:\newlinef(x)={1x+1amp;for xgt;5, 2xamp;for xgt;4f(x) = \begin{cases} \frac{1}{x+1} &amp; \text{for } x &gt; -5,\ 2^{x} &amp; \text{for } x &gt; -4 \end{cases}\newlineWe need to determine which part of the piecewise function to use when calculating the limit as xx approaches 4-4 from the right.
  2. Selecting appropriate part: Since we are looking for the limit as xx approaches 4-4 from the right, we will use the part of the function that is defined for x > -4, which is f(x)=2xf(x) = 2^{x}.
  3. Calculating limit of selected part: Now we calculate the limit of 2x2^{x} as xx approaches 4-4 from the right:\newlinelimx4+2x\lim_{x \to -4^{+}} 2^{x}.\newlineSince 2x2^{x} is a continuous function for all xx, we can simply substitute 4-4 into the function to find the limit.
  4. Substituting value and simplifying: Substituting 4-4 into the function, we get:\newlinelimx4+2x=24.\lim_{x \to -4^{+}} 2^{x} = 2^{-4}.
  5. Final result: Calculating 242^{-4}, we get:\newline24=1/(24)=1/162^{-4} = 1/(2^4) = 1/16.
  6. Final result: Calculating 242^{-4}, we get:\newline24=1/(24)=1/162^{-4} = 1/(2^4) = 1/16.Therefore, the limit of f(x)f(x) as xx approaches 4-4 from the right is 1/161/16.

More problems from Compare linear and exponential growth