Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the given expression without logs, in simplest form. Assume all variables represent positive values.

(e^(ln(10 z)+ln(6y^(3))))
Answer:

Express the given expression without logs, in simplest form. Assume all variables represent positive values.\newline(eln(10z)+ln(6y3)) \left(e^{\ln (10 z)+\ln \left(6 y^{3}\right)}\right) \newlineAnswer:

Full solution

Q. Express the given expression without logs, in simplest form. Assume all variables represent positive values.\newline(eln(10z)+ln(6y3)) \left(e^{\ln (10 z)+\ln \left(6 y^{3}\right)}\right) \newlineAnswer:
  1. Apply Logarithm Property: Use the property of logarithms that ln(a)+ln(b)=ln(ab)\ln(a) + \ln(b) = \ln(ab).eln(10z)+ln(6y3)e^{\ln(10z) + \ln(6y^3)} can be rewritten using this property.eln(10z6y3)e^{\ln(10z \cdot 6y^3)}
  2. Rewrite Using Property: Simplify the expression inside the logarithm.\newline10z×6y3=60zy310z \times 6y^3 = 60zy^3\newlineSo, eln(10z)+ln(6y3)e^{\ln(10z) + \ln(6y^3)} becomes eln(60zy3)e^{\ln(60zy^3)}.
  3. Simplify Inside Logarithm: Use the property of exponents and logarithms that eln(x)=xe^{\ln(x)} = x. eln(60zy3)e^{\ln(60zy^3)} simplifies to 60zy360zy^3.

More problems from Simplify radical expressions with variables